Advertisement

Expressive completeness of Temporal Logic of action

  • Alexander Rabinovich
Contributed Papers Logic - Semantics - Automata
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1450)

Abstract

The paper compares the expressive power of monadic second order logic of order, a fundamental formalism in mathematical logic and theory of computation, with that of a fragment of Temporal Logic of Actions introduced by Lamport for specifying the behavior of concurrent systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Büchi. On a decision method in restricted second order arithmetic In Proc. International Congress on Logic, Methodology and Philosophy of Science, E. Nagel at al. eds, Stanford University Press, pp 1–11, 1960.Google Scholar
  2. 2.
    L. Lamport. What good is temporal logic. In R. E. A. Manson editor Information Processing 83, Proceedings of IFIP 9th World Congress, Paris pp. 657–668. IFIP, North Holland.Google Scholar
  3. 3.
    L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming Languages and Systems, 16(3), pp. 872–923, 1994.CrossRefGoogle Scholar
  4. 4.
    Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems, Springer Verlag, 1992.Google Scholar
  5. 5.
    M. O. Rabin. Decidable theories. In J. Barwise editor Handbook of Mathematical Logic, North-Holland, 1977.Google Scholar
  6. 6.
    A. Rabinovich. On Translations of Temporal Logic of Actions into Monadic Second Order Logic. Theoretical Computer Science 193 (1998), 197–214.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Rabinovich and B. A. Trakhtenbrot. From Finite Automata to Hybrid Systems. Fundamentals of Computation Theory 1997, LNCS vol. 1279, pages 411–422, 1997.MathSciNetGoogle Scholar
  8. 8.
    W. Thomas. Automata on Infinite Objects. In J. van Leeuwen editor Handbook of Theoretical Computer Science, The MIT Press, 1990.Google Scholar
  9. 9.
    B. A. Trakhtenbrot and Y. M. Barzdin. Finite Automata, North Holland Amsterdam, 1973.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Alexander Rabinovich
    • 1
  1. 1.Department of Computer Science Raymond and Beverly Sackler Faculty of ExactSciences Tel Aviv UniversityTel AvivIsrael

Personalised recommendations