Hypergraph traversal revisited: Cost measures and dynamic algorithms

  • Giorgio Ausiello
  • Giuseppe F. Italiano
  • Umberto Nanni
Invited Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1450)


Directed hypergraphs are used in several applications to model different combinatorial structures. A directed hypergraph is defined by a set of nodes and a set of hyperarcs, each connecting a set of source nodes to a single target node. A hyperpath, similarly to the notion of path in directed graphs, consists of a connection among nodes using hyperarcs. Unlike paths in graphs, however, hyperpaths are suitable of many different definitions of measure, corresponding to different concepts arising in various applications. In this paper we consider the problem of finding optimal hyperpaths according to several measures. We also provide results that may shed some light on the intrinsic complexity of finding optimal hyperpaths.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Alimonti, E. Feuerstein, and U. Nanni. Linear time algorithms for liveness and boundedness in conflict-free petri nets. In 1st Latin American Theoretical Informatics, volume 583, pages 1–14. Lecture Notes in Computer Science, Springer-Verlag, 1992.Google Scholar
  2. 2.
    G. Ausiello, A. D'Atri, and D. Saccà. Graph algorithms for functional dependency manipulation. Journal of the ACM, 30:752–766, 1983.MATHCrossRefGoogle Scholar
  3. 3.
    G. Ausiello, A. D'Atri, and D. Saccà. Minimal representation of directed hypergraphs. SIAM Journal on Computing, 15:418–431, 1986.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    G. Ausiello, R. Giaccio. On-line algorithms for satisfiability formulae with uncertainty. Theoretical Computer Science 171:3–24, 1997.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    G. Ausiello, R. Giaccio, G. F. Italiano, and U. Nanni. Optimal traversal of directed hypergraphs. Manuscript, 1997.Google Scholar
  6. 6.
    G. Ausiello and G. F. Italiano. Online algorithms for polynomially solvable satisfiability problems. Journal of Logic Programming, 10:69–90, 1991.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Ausiello, G. F. Italiano, and U. Nanni. Dynamic maintenance of directed hypergraphs. Theoretical Computer Science, 72(2–3):97–117, 1990.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM, 34:596–615, 1987.MathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Gallo, G. Longo, S. Nguyen, and S. Pallottino. Directed hypergraphs and applications. Discrete Applied Mathematics 42 (1993) 177–201.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Gallo and G. Rago. A hypergraph approach to logical inference for Datalog formulae. Technical Report 28/90, Dip. di Informatica, Univ. of Pisa, Italy, 1990.Google Scholar
  11. 11.
    G. F. Italiano and U. Nanni. On line maintenance of minimal directed hypergraphs. In 3rd Italian Conf. on Theoretical Computer Science, pages 335–349. World Scientific Co., 1989.Google Scholar
  12. 12.
    D. E. Knuth. A generalization of Dijkstra's algorithm. Information Processing Letters, 6(1):1–5, 1977.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    P. B. Miltersen. On-line reevaluation of functions. Technical Report DAIMI PB-380, Comp. Sci. Dept., Aarhus University, January 1992.Google Scholar
  14. 14.
    S. Nguyen and S. Pallottino. Hyperpaths and shortest hyperpaths. Combinatorial Optimization, 1403:258–271, 1989.MATHMathSciNetGoogle Scholar
  15. 15.
    G. Ramalingam and T. Reps, An Incremental Algorithm for a Generalization of the Shortest Path Problem, Journal of Algorithms, 21:267–305, 1996.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Giorgio Ausiello
    • 1
  • Giuseppe F. Italiano
    • 2
  • Umberto Nanni
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversità di Roma “La Sapienza”Italy
  2. 2.Dipartimento di Matematica Applicata ed InformaticaUniversità “Ca' Foscari” di VeneziaItaly

Personalised recommendations