Skip to main content

Occlusions, discontinuities, and epipolar lines in stereo

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1406)


Binocular stereo is the process of obtaining depth information from a pair of left and right views of a scene. We present a new approach to compute the disparity map by solving a global optimization problem that models occlusions, discontinuities, and epipolar-line interactions.

In the model, geometric constraints require every disparity discontinuity along the epipolar line in one eye to always correspond to an occluded region in the other eye, while at the same time encouraging smoothness across epipolar lines. Smoothing coefficients are adjusted according to the edge and junction information. For some well-defined set of optimization functions, we can map the optimization problem to a maximum-flow problem on a directed graph in a novel way, which enables us to obtain a global solution in a polynomial time. Experiments confirm the validity of this approach.


  • Uniqueness Constraint
  • Left Image
  • Epipolar Line
  • Matching Edge
  • Occlude Region

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This work was supported in part by NSF under contract IRI-9700446.


  1. B. Anderson. The role of partial occlusion in stereopsis. Nature, 367:365–368, 1994.

    CrossRef  Google Scholar 

  2. N. Ayache. Artificial Vision for Mobile Robots. MIT Press. Cambridge, Mass., 1991.

    Google Scholar 

  3. P. N. Belhumeur and D. Mumford. A bayesian treatment of the stereo correspondence problem using half-occluded regions. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1992.

    Google Scholar 

  4. A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, Cambridge, Mass., 1987.

    Google Scholar 

  5. P. Burt and B. Julesz. A disparity gradient limit for binocular fusion. Science, 208:615–617, 1980.

    Google Scholar 

  6. B. Cernushi-Frias, D. B. Cooper, Y. P. Hung, and P. Belhumeur. Towards a model-based bayesian theory for estimating and recognizing parameterized 3d objects using two or more images taken from different positions. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-11:1028–1052, 1989.

    CrossRef  Google Scholar 

  7. A. Champolle, D. Geiger, and S. Mallat. Un algorithme multi-échelle de mise encorrespondance stéréo basé sur les champs markoviens. In 13th GRETSI Conference on Signal and Image Processing, Juan-les-Pins, France, Sept. 1991.

    Google Scholar 

  8. B. V. Cherkassky and A. V. Goldberg On Implementing Push-Relabel Method for the Maximum Flow Problem. In Proc. 4th Int. Programming and Combinatorial Optimization Conf., pages 157–171, 1995.

    Google Scholar 

  9. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGrow-Hill, New York, 1990.

    MATH  Google Scholar 

  10. O. Faugeras Three-Dimensional Computer Vision. MIT Press. Cambridge, Mass., 1993.

    Google Scholar 

  11. D. Geiger and B. Ladendorf and A. Yuille Occlusions and binocular stereo. International Journal of Computer Vision, 14, pp 211–226 March, 1995.

    CrossRef  Google Scholar 

  12. B. Gillam and E. Borsting. The role of monocular regions in stereoscopic displays. Perception, 17:603–608, 1988.

    Google Scholar 

  13. W. E. L. Grimson. From Images to Surfaces. MIT Press. Cambridge, Mass., 1981.

    Google Scholar 

  14. B. Julesz. Foundations of Cyclopean Perception. The University of Chicago Press, Chicago, 1971.

    Google Scholar 

  15. T. Kanade and M. Okutomi. A stereo matching algorithm with an adaptive window: theory and experiments. In Proc. Image Understanding Workshop DARPA, PA, September 1990.

    Google Scholar 

  16. J. Malik. On Binocularly viewed occlusion Junctions. In Fourth European Conference on Computer Vision, vol.1, pages 167–174, Cambridge, UK, 1996. Springer-Verlag.

    Google Scholar 

  17. D. Marr and T. Poggio. Cooperative computation of stereo disparity. Science, 194:283–287, 1976.

    Google Scholar 

  18. D. Marr and T. Poggio. A computational theory of human stereo vision. Proceedings of the Royal Society of London B, 204:301–328, 1979.

    CrossRef  Google Scholar 

  19. K. Nakayama and S. Shimojo. Da vinci stereopsis: depth and subjective occluding contours from unpaired image points. Vision Research, 30:1811–1825, 1990.

    CrossRef  Google Scholar 

  20. Y. Ohta and T. Kanade. Stereo by intra-and inter-scanline search using dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-7(2):139–154, 1985.

    CrossRef  Google Scholar 

  21. S. B. Pollard, J. E. W. Mayhew, and J. P. Frisby. Disparity gradients and stereo correspondences. Perception, 1987.

    Google Scholar 

  22. S. Roy and I. Cox. A Maximum-Flow Formulation of the N-camera Stereo Correspondence Problem In Proc. Int. Conf. on Computer Vision, ICCV'98, Bombay, India 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishikawa, H., Geiger, D. (1998). Occlusions, discontinuities, and epipolar lines in stereo. In: Burkhardt, H., Neumann, B. (eds) Computer Vision — ECCV'98. ECCV 1998. Lecture Notes in Computer Science, vol 1406. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64569-6

  • Online ISBN: 978-3-540-69354-3

  • eBook Packages: Springer Book Archive