Towards a formal semantics of verilog using duration calculus

  • Gerardo Schneider
  • Qiwen Xu
Selected Presentations Applications
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1486)


We formalise the semantics of V , a simple version of Verilog hardware description language using an extension of Duration Calculus. The language is simple enough for experimenting formalisation, but contains sufficient features for being practically relevant. V programs can exhibit a rich variety of computations, and it is therefore necessary to extend Duration Calculus with several features, including Weakly Monotonic Time, infinite intervals and fixed point operators. The semantics is compositional and can be used as the formal basis of a formal theory of Verilog.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Information Processing Letters, 40(5):269–276, 1991.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Zhou Chaochen, Dang Van Hung, and Li Xiaoshan. A duration calculus with infinite intervals. In Fundamentals of Computation Theory, Horst Reichel (Ed.), pages 16–41. LNCS 965, Springer-Verlag, 1995.Google Scholar
  3. 3.
    Zhou Chaochen, Wang Ji, and A.P. Ravn. A formal description of hybrid systems. In R. Alur, T. Henzinger, and E. Sontag, editors, Hybrid Systems III: Verification and Control, pages 511–530. LNCS 1066, Springer-Verlag, 1995.Google Scholar
  4. 4.
    Zhou Chaochen, A.P. Ravn, and M.R. Hansen. An extended duration calculus for hybrid systems. In Hybrid Systems, R.L. Grossman, A. Nerode, A.P. Ravn, H. Rischel (Eds.), pages 36–59. LNCS 736, Springer-Verlag, 1993.Google Scholar
  5. 5.
    W.-P. de Roever. The quest for compositionality. In Proc. of IFIP Working Conf., The Role of Abstract Models in Computer Science. Elsevier Science B.V. (North-Holland), 1985.Google Scholar
  6. 6.
    M.J.C. Gordon. The Semantic Challenge of Verilog HDL. In Tenth Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, pages 136–145, June 1995.Google Scholar
  7. 7.
    IEEE Computer Society. IEEE Standard Hardware Description Language Based on the Verilog Hardware Description Language (IEEE std 1364–1995, 1995.Google Scholar
  8. 8.
    He Jifeng. From CSP to hybrid systems. In A.W. Roscoe, editor, A Classical Mind, Eassy in Honour of C.A.R. Hoare, pages 171–189. Prentice-Hall International, 1994.Google Scholar
  9. 9.
    R. Koymans. Specifying Message Passing and Time-Critical Systems with Temporal Logic. LNCS 651, Springer-Verlag, 1992.Google Scholar
  10. 10.
    Z. Liu, A.P. Ravn, and X.-S. Li. Verifying duration properties of timed transition systems. In Proc. IFIP Working Conference PROCOMET’98. Chapman &, Hall, 1998.Google Scholar
  11. 11.
    B. Moszkowski. A temporal logic for multilevel reasoning about hardware. IEEE Computer, 18(2):10–19, 1985.Google Scholar
  12. 12.
    B. Moszkowski. Compositional reasoning about projected and infinite time. In Proc. the First IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’95), pages 238–245. IEEE Computer Society Press, 1995.Google Scholar
  13. 13.
    G.J. Pace and J.-F. He. Formal reasoning with Verilog HDL. In Proc. the Workshop on Formal Techniques for Hardware and Hardware-like Systems, Sweden 1988. 14. P.K. Pandya. A compositional semantics of SL. Technical report, DeTfoRS Group, UNU/IIST, October 1997.Google Scholar
  14. 15.
    P.K. Pandya and Dang Van Hung. Duration calculus with weakly monotonic time. This volume.Google Scholar
  15. 16.
    P.K. Pandya and Y.S. Ramakrishna. A recursive duration calculus. Technical report, CS-95/3, Computer Science Group, TIFR, Bombay, 1995.Google Scholar
  16. 17.
    P.K. Pandya, H.-P. Wang, and Q.-W. Xu. Towards a theory of sequential hybrid programs. In Proc. IFIP Working Conference PROCOMET’98. Chapman & Hall, 1998.Google Scholar
  17. 18.
    G. Schneider and Q.-W. Xu. Towards a Formal Semantics of Verilog using Duration Calculus. Technical Report 133, UNU/IIST, P.O.Box 3058, Macau, February 1998.Google Scholar
  18. 19.
    H.-P. Wang and Q.-W. Xu. Infinite duration calculus with fixed-point operators. Technical Report draft, UNU/IIST, P.O.Box 3058, Macau, September 1997.Google Scholar
  19. 20.
    Q.-W. Xu and M. Swarup. Compositional reasoning using assumption — commitment paradigm. In H. Langmaack, A. Pnueli, and W.-P. de Roever, editors, International Symposium, Compositionality — The Significant Difference. Springer-Verlag, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Gerardo Schneider
    • 1
  • Qiwen Xu
    • 1
  1. 1.International Institute for Software TechnologyUnited Nations UniversityMacau

Personalised recommendations