Duration Calculus of Weakly Monotonic Time

  • Paritosh K. Pandya
  • Dang Van Hung
Selected Presentations Temporal Logic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1486)


We extend Duration Calculus to a logic which allows description of Discrete Processes where several steps of computation can occur at the same time point. The resulting logic is called Duration Calculus of Weakly Monotonic Time (WDC). It allows effects such as true synchrony and digitisation to be modelled. As an example of this, we formulate a novel semantics of Timed CSP assuming that the communication and computation take no time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Alur and T.A. Henzinger. Logics and models of real time: A survey. In Proc. REX workshop on real-time: Theory in Practice, volume 600 of LNCS. Springer-Verlag, 1991.Google Scholar
  2. 2.
    Gérard Berry and Georges Gonthier. The esterel synchronous programming language: Design, semantics, implementation. Science of Computer Programming, 19:87–152, 1992.MATHCrossRefGoogle Scholar
  3. 3.
    J. Davis and S. Schneider. A brief history of timed csp. Theoretical Computer Science, 138, 1995.Google Scholar
  4. 4.
    M.R. Hansen, P.K. Pandya, and Chaochen Zhou. Finite divergence. Theoretical Computer Science, 138:113–139, 1995.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    T. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks. volume 623 of LNCS, pages 273–337. Springer-Verlag, 1992.Google Scholar
  6. 6.
    P.K. Pandya. Some extensions to mean-value calculus: expressiveness and decidability. In H. Kleine Buning, editor, Proc. CSL’95, volume 1092 of LNCS. Springer-Verlag, 1995.Google Scholar
  7. 7.
    P.K. Pandya. A compositional semantics of SL. Technical report, DeTfoRS Group, UNU/IIST, October 1997.Google Scholar
  8. 8.
    P.K. Pandya and Y.S. Ramakrishna. A recursive mean value calculus. Technical report, Computer Science Group, TIFR, Bombay, TCS-95/3, 1995.Google Scholar
  9. 9.
    P.K. Pandya and D.V. Hung. Duration Calculus of Weakly Monotonic Time. Technical Report 129, UNU/IIST, P.O. Box 3058, Macau, 1997.Google Scholar
  10. 10.
    G. Schneider and Qiwen Xu. Towards a formal semantics of Verilog using Duration Caculus. In proc. of FTRTFT’98, LNCS, 1998. (to appear).Google Scholar
  11. 11.
    Qiwen Xu and Swarup Mohalik. Compositional verification in duration calculus. Technical Report 136, UNU/IIST, P.O. Box 3058 Macau, 1997.Google Scholar
  12. 12.
    Chaochen Zhou, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Information Processing Letters, 40(5):269–276, 1991.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Chaochen Zhou and Xiaoshan Li. A mean value calculus of durations. In A Classical Mind: Essays in Honour of C.A.R. Hoare, A. W. Roscoe (ed), pages 431–451. Prentice Hall International, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Paritosh K. Pandya
    • 1
  • Dang Van Hung
    • 2
  1. 1.Tata Institute of Fundamental ResearchMumbaiIndia
  2. 2.UNU/IISTMacau

Personalised recommendations