Verified lexical analysis

  • Tobias Nipkow
Invited Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1479)


This paper presents the development and verification of a (very simple) lexical analyzer generator that takes a regular expression and yields a functional lexical analyzer. The emphasis is on simplicity and executability. The work was carried out with the help of the theorem prover Isabelle/HOL.


Regular Expression Finite Automaton Automaton Theory Lexical Analysis Deterministic Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Bird and P. Wadler. Introduction to Functional Programming. Prentice-Hall, 1988.Google Scholar
  2. 2.
    R. Constable, P. Jackson, P. Naumov, and J. Uribe. Constructively formalizing automata. In G. Plotkin and M. Tofte, editors, Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT Press, 1998. To appear.Google Scholar
  3. 3.
    W. Feischer. Berechenbarheit. Springer-Verlag, 1993.Google Scholar
  4. 4.
    J.-C. Filliâtre. Finite automata theory in Coq. A constructive proof of Kleene's theorem. Technical Report 97-04, Laboratoire de l'Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, 1997.Google Scholar
  5. 5.
    R. Handl. Verifikation eines Scanners (mit Isabelle). Master's thesis, Institut für Informatik, TU München, 1993.Google Scholar
  6. 6.
    J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.Google Scholar
  7. 7.
    C. Kreitz. Constructive automata theory implemented with the Nuprl proof development system. Technical Report TR 86-779, Dept. of Computer Science, Cornell University, 1986.Google Scholar
  8. 8.
    T. Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook. In V. Chandru and V. Vinay, editors, Foundations of Software Technology and Theoretical Computer Science, volume 1180 of Lect. Notes in Comp. Sci., pages 180–192. Springer-Verlag, 1996.Google Scholar
  9. 9.
    L. C. Paulson. Generic automatic proof tools. In R. Veroff, editor, Automated Reasoning and its Applications. MIT Press, 1997. Also Report 396, Computer Laboratory, University of Cambridge.Google Scholar
  10. 10.
    L. C. Paulson. A generic tableau prover and its integration with Isabelle. Technical Report 441, University of Cambridge, Computer Laboratory, 1998.Google Scholar
  11. 11.
    S. Thompson. Regular expressions and automata using Miranda. Available at, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Tobias Nipkow
    • 1
  1. 1.Institut für InformatikTechnische UniversitÄt MünchenMünchenGermany

Personalised recommendations