Compact encodings of planar graphs via canonical orderings and multiple parentheses

  • Richie Chih-Nan Chuang
  • Ashim Garg
  • Xin He
  • Ming-Yang Kao
  • Hsueh-I Lu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1443)


We consider the problem of coding planar graphs by binary strings. Depending on whether O(1)-time queries for adjacency and degree are supported, we present three sets of coding schemes which all take linear time for encoding and decoding. The encoding lengths are significantly shorter than the previously known results in each case.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Bell, J. G. Cleary, and I. Witten, Text Compression, Prentice-Hall, 1990.Google Scholar
  2. 2.
    D. R. Clark, Compact Pat Tree, PhD thesis, University of Waterloo, 1996.Google Scholar
  3. 3.
    H. D. Fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid, Combinatorica, 10 (1990), pp. 41–51.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Galperin and A. Wigderson, Succinct representations of graphs, Information and Control, 56 (1983), pp. 183–198.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Itai and M. Rodeh, Representation of graphs, Acta Informatica, 17 (1982), pp. 215–219.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    G. Jacobson, Space-efficient static trees and graphs, in proc. 30th FOCS, 30 Oct.–1 Nov. 1989, pp. 549–554.Google Scholar
  7. 7.
    S. Kannan, N. Naor, and S. Rudich, Implicit representation of graphs, SIAM Journal on Discrete Mathematics, 5 (1992), pp. 596–603.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Kant, Drawing planar graphs using the lmc-ordering (extended abstract), in proc. 33rd FOCS, 24–27 Oct. 1992, pp. 101–110.Google Scholar
  9. 9.
    -, Algorithms for Drawing Planar Graphs, PhD thesis, Univ. of Utrecht, 1993.Google Scholar
  10. 10.
    G. Kant and X. He, Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems, TCS 172 (1997), pp. 175–193.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. Y. Kao, M. Fürer, X. He, and B. Raghavachari, Optimal parallel algorithms for straight-line grid embeddings of planar graphs, SIAM Journal on Discrete Mathematics, 7 (1994), pp. 632–646.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Y. Kao and S. H. Teng, Simple and efficient compression schemes for dense and complement graphs, in Fifth Annual Symposium on Algorithms and Computation, LNCS 834, Beijing, China, 1994, Springer-Verlag, pp. 201–210.Google Scholar
  13. 13.
    K. Keeler and J. Westbrook, Short encodings of planar graphs and maps, Discrete Applied Mathematics, 58 (1995), pp. 239–252.MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    J. I. Munro, Tables, in proc. of 16th Conf. on Foundations of Software Technology and Theoret. Comp. Sci., LNCS 1180, 1996, Springer-Verlag, pp. 37–42.Google Scholar
  15. 15.
    J. I. Munro and V. Raman, Succinct representation of balanced parentheses, static trees and planar graphs, in proc. 38th FOCS 20–22 Oct. 1997.Google Scholar
  16. 16.
    M. Naor, Succinct representation of general unlabeled graphs, Discrete Applied Mathematics, 28 (1990), pp. 303–307.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    C. H. Papadimitriou and M. Yannakakis, A note on succinct representations of graphs, Information and Control, 71 (1986), pp. 181–185.MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    W. Schnyder, Embedding planar graphs on the grid, in Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, 1990, pp. 138–148.Google Scholar
  19. 19.
    G. Turán, On the succinct representation of graphs, Discrete Applied Mathematics, 8 (1984), pp. 289–294.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Richie Chih-Nan Chuang
    • 1
  • Ashim Garg
    • 2
  • Xin He
    • 2
  • Ming-Yang Kao
    • 3
  • Hsueh-I Lu
    • 1
  1. 1.Department of Computer Science and Information EngineeringNational Chung-Cheng UniversityChia-YiTaiwan
  2. 2.Department of Computer ScienceState University of New York at BuffaloBuffaloUSA
  3. 3.Department of Computer ScienceYale UniversityNew HavenUSA

Personalised recommendations