Computing the lead term of an abelian L-function

  • David S. Dummit
  • Brett A. Tangedal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1423)


We describe the extension of the techniques implemented in [DSS] to the computation of provably accurate values for the lead term at s = 0 of abelian L-functions having higher order zeros, and provide some explicit examples. In particular we raise the question of applying the higher order extensions of the abelian Stark Conjecture to the explicit construction of an interesting field extension in a manner analogous to the applications here and in [DSS], [Ro] in the case of zeros of rank one.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BBBCO]
    C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier: User's Guide to PARI-GP, 1997.Google Scholar
  2. [DSS]
    David S. Dummit, Jonathan W. Sands, and Brett A. Tangedal: Computing Stark units for totally real cubic fields. Math. Comp. 66 (1997) 1239–1267MATHMathSciNetCrossRefGoogle Scholar
  3. [DH]
    David S. Dummit and David R. Hayes: Checking the refined p-adic Stark Conjecture when p is Archimedean, in Algorithmic Number Theory, Proceedings ANTS 2, Talence, France, Lecture Notes in Computer Science 1122, Henri Cohen, ed; Springer-Verlag, Berlin-Heidelberg-New York, 1996. 91–97Google Scholar
  4. [F]
    Eduardo Friedman: Hecke's integral formula. Séminaire de Théorie des Nombres de Bordeaux (1987–88) Exposé No. 5Google Scholar
  5. [G]
    David Grant: Units from 5-torsion on the Jacobian of y 2=x 5+1/4 and the conjectures of Stark and Rubin, preprintGoogle Scholar
  6. [L]
    Edmund Landau: über Ideale und Primideale in Idealklassen. Math. Zeit. 2 (1918) 52–154MATHCrossRefGoogle Scholar
  7. [P]
    Cristian D. Popescu: Base change for Stark-type conjectures “over ℤ”, preprintGoogle Scholar
  8. [Ro]
    X.F. Roblot: Algorithmes de factorisation dans les extensions relatives et applications de la conjecture de Stark à la construction des corps de classes de rayon, Thèse, Université Bordeaux I, 1997Google Scholar
  9. [R]
    Karl Rubin: A Stark conjecture “over ℤ” for abelian L-functions with multiple zeros. Ann. Inst. Fourier (Grenoble) 46 (1996) 33–62MATHMathSciNetGoogle Scholar
  10. [T]
    Brett A. Tangedal: A question of Stark. Pacific J. Math. 180 (1997) 187–199MathSciNetCrossRefMATHGoogle Scholar
  11. [Ta]
    Tikao Tatuzawa: On the Hecke-Landau L-series. Nagoya Math. J. 16 (1960) 11–20MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • David S. Dummit
    • 1
  • Brett A. Tangedal
    • 2
  1. 1.University of VermontBurlingtonUSA
  2. 2.College of CharlestonCharlestonUSA

Personalised recommendations