Skip to main content

NTRU: A ring-based public key cryptosystem

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1423)

Abstract

We describe NTRU, a new public key cryptosystem. NTRU features reasonably short, easily created keys, high speed, and low memory requirements. NTRU encryption and decryption use a mixing system suggested by polynomial algebra combined with a clustering principle based on elementary probability theory. The security of the NTRU cryptosystem comes from the interaction of the polynomial mixing system with the independence of reduction modulo two relatively prime integers p and q.

Keywords

  • Security Level
  • Lattice Reduction
  • Encrypt Message
  • Short Vector
  • Message Block

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0054868
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-69113-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Blum, S. Goldwasser, An efficient probabilistic public-key encryption scheme which hides all partial information, Advances in Cryptology: Proceedings of CRYPTO 84, Lecture Notes in Computer Science, vol. 196, Springer-Verlag, 1985, pp. 289–299.

    Google Scholar 

  2. D. Coppersmith, A. Shamir, Lattice attacks on NTRU, Preprint, April 5, 1997; presented at Eurocrypt 97.

    Google Scholar 

  3. W. Diffie, M.E. Hellman, New directions in cryptography, IEEE Trans. on Information Theory 22 (1976), 644–654.

    MATH  MathSciNet  CrossRef  Google Scholar 

  4. O. Goldreich, S. Goldwasser, S. Halevi, Public-key cryptosystems from lattice reduction problems, MIT — Laboratory for Computer Science preprint, November 1996.

    Google Scholar 

  5. S. Goldwasser and A. Micali, Probabilistic encryption, J. Computer and Systems Science 28 (1984), 270–299.

    MATH  MathSciNet  CrossRef  Google Scholar 

  6. J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key cryptosystem, Preprint; presented at the rump session of Crypto 96.

    Google Scholar 

  7. A.K. Lenstra, H.W. Lenstra, L. LovŚz, Factoring polynomials with polynomial coefficients, Math. Annalen 261 (1982), 515–534.

    MATH  CrossRef  Google Scholar 

  8. R.J. McEliece, A public-key cryptosystem based on algebraic coding theory, JPL Pasadena, DSN Progress Reports 42–44 (1978), 114–116.

    Google Scholar 

  9. R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public key cryptosystems, Communications of the ACM 21 (1978), 120–126.

    MATH  MathSciNet  CrossRef  Google Scholar 

  10. C.P. Schnorr, Block reduced lattice bases and successive minima, Combinatorics, Probability and Computing 3 (1994), 507–522.

    MATH  MathSciNet  CrossRef  Google Scholar 

  11. C.P. Schnorr, M. Euchner, Lattice basis reduction: improved practical algorithms and solving subset sum problems, Mathematical Programing 66 (1994), 181–199.

    MATH  MathSciNet  CrossRef  Google Scholar 

  12. C.P. Schnorr, H.H. Hoerner, Attacking the Chor Rivest cryptosystem by improved lattice reduction, Proc. EUROCRYPT 1995, Lecture Notes in Computer Science 921, Springer-Verlag, 1995, pp. 1–12.

    Google Scholar 

  13. J.H. Silverman, A Meet-In-The-Middle Attack on an NTRU Private Key, preprint.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoffstein, J., Pipher, J., Silverman, J.H. (1998). NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (eds) Algorithmic Number Theory. ANTS 1998. Lecture Notes in Computer Science, vol 1423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054868

Download citation

  • DOI: https://doi.org/10.1007/BFb0054868

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64657-0

  • Online ISBN: 978-3-540-69113-6

  • eBook Packages: Springer Book Archive