Skip to main content

New experimental results concerning the Goldbach conjecture

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1423)

Abstract

The Goldbach conjecture states that every even integer ≥ 4 can be written as a sum of two prime numbers. It is known to be true up to 4 × 1011. In this paper, new experiments on a Cray C916 supercomputer and on an SGI compute server with 18 R10000 CPUs are described, which extend this bound to 1014. Two consequences are that (1) under the assumption of the Generalized Riemann hypothesis, every odd number ≥7 can be written as a sum of three prime numbers, and (2) under the assumption of the Riemann hypothesis, every even positive integer can be written as a sum of at most four prime numbers. In addition, we have verified the Goldbach conjecture for all the even numbers in the intervals [105i, 105i +108], for i=3, 4,..., 20 and [1010i, 1010i + 109], for i=20,21,..., 30.

A heuristic model is given which predicts the average number of steps needed to verify the Goldbach conjecture on a given interval. Our experimental results are in good agreement with this prediction. This adds to the evidence of the truth of the Goldbach conjecture.

1991 Mathematics Subject Classification

  • 11P32
  • 11Y99

1991 Computing Reviews Classification System

  • F.2.1

Keywords and Phrases

  • Goldbach conjecture
  • sum of primes
  • primality test
  • vector computer
  • Cray C916
  • cluster of workstations

To appear in the Proceedings of the Algorithmic Number Theory Symposium III (Reed College, Portland, Oregon, USA, June 21–25, 1998).

This is a preview of subscription content, access via your institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.O.L. Atkin and F. Morain. Elliptic curves and primality proving. Mathematics of Computation, 61:29–68, 1993.

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Wieb Bosma and Marc-Paul van der Hulst. Primality proving with cyclotomy. PhD thesis, University of Amsterdam, December 1990.

    Google Scholar 

  3. J.R. Chen and T.Z. Wang, On the odd Goldbach problem, Acta Math. Sinica 32 (1989), pp. 702–718 (in Chinese).

    MATH  MathSciNet  Google Scholar 

  4. J.R. Chen and T.Z. Wang, On odd Goldbach problem under General Riemann Hypothesis, Science in China 36 (1993), pp. 682–691.

    MATH  Google Scholar 

  5. H. Cohen and A.K. Lenstra, Implementation of a new primality test, Math. Comp. 48 (1987), pp. 103–121.

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. J-M. Deshouillers, G. Effinger, H. te Riele and D. Zinoviev, A complete Vinogradov 3-primes theorem under the Riemann hypothesis, Electronic Research Announcements of the AMS 3 (1997), pp. 99–104 (September 17, 1997); http://www.ams.org/journals/era/home-1997.html.

    CrossRef  MATH  Google Scholar 

  7. A. Granville, J. van de Lune and H.J.J. te Riele, Checking the Goldbach conjecture on a vector computer, Number Theory and Applications (R.A. Mollin, ed.), Kluwer, Dordrecht, 1989, pp. 423–433.

    Google Scholar 

  8. G.H. Hardy and L.E. Littlewood, Some problems of ‘Partitio Numerorum'; III: On the expression of a number as a sum of primes, Acta Math. 44 (1922/1923), pp. 1–70.

    CrossRef  Google Scholar 

  9. G. Jaeschke, On strong pseudoprimes to several bases, Math. Comp. 61 (1993), pp. 915–926.

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. L. Kaniecki, On šnirelman's constant under the Riemann hypothesis, Acta. Arithm. 72 (1995), pp. 361–374.

    MATH  MathSciNet  Google Scholar 

  11. FranÇois Morain. Courbes Elliptiques et Tests de Primalité. PhD thesis, L'Université Claude Bernard, Lyon I, September 1990. Introduction in French, body in English.

    Google Scholar 

  12. O. Ramaré, On šnirel'man's Constant, Ann. Scuola Norm. Sup. Pisa 22 (1995), pp. 645–706.

    MATH  Google Scholar 

  13. Yannick Saouter, Checking the odd Goldbach conjecture up to 10 20, Math. Comp., 67 (1998), pp. 863–866.

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. L. Schoenfeld, Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x). II, Math. Comp. 30 (1976), pp. 337–360.

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Mok-Kong Shen, On Checking the Goldbach conjecture, BIT 4 (1964), pp. 243–245.

    CrossRef  MATH  Google Scholar 

  16. M.K. Sinisalo, Checking the Goldbach conjecture up to 4 · 10 11, Math. Comp. 61 (1993), pp. 931–934.

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. M.L. Stein and P.R. Stein, Experimental results on additive 2 bases, Math. Comp. 19 (1965), pp. 427–434.

    CrossRef  MATH  Google Scholar 

  18. I.M. Vinogradov, Representation of an odd number as a sum of three primes, Comptes Rendues (Doklady) de l'Académie des Sciences de l'URSS, 15 (1937), pp. 291–294.

    Google Scholar 

  19. D. Zinoviev, On Vinogradov's constant in Goldbach's ternary problem, J. Number Th. 65 (1997), pp. 334–358.

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deshouillers, J.M., te Riele, H.J.J., Saouter, Y. (1998). New experimental results concerning the Goldbach conjecture. In: Buhler, J.P. (eds) Algorithmic Number Theory. ANTS 1998. Lecture Notes in Computer Science, vol 1423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054863

Download citation

  • DOI: https://doi.org/10.1007/BFb0054863

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64657-0

  • Online ISBN: 978-3-540-69113-6

  • eBook Packages: Springer Book Archive