New experimental results concerning the Goldbach conjecture

  • J. -M. Deshouillers
  • H. J. J. te Riele
  • Y. Saouter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1423)


The Goldbach conjecture states that every even integer ≥ 4 can be written as a sum of two prime numbers. It is known to be true up to 4 × 1011. In this paper, new experiments on a Cray C916 supercomputer and on an SGI compute server with 18 R10000 CPUs are described, which extend this bound to 1014. Two consequences are that (1) under the assumption of the Generalized Riemann hypothesis, every odd number ≥7 can be written as a sum of three prime numbers, and (2) under the assumption of the Riemann hypothesis, every even positive integer can be written as a sum of at most four prime numbers. In addition, we have verified the Goldbach conjecture for all the even numbers in the intervals [105i , 105i +108], for i=3, 4,..., 20 and [1010i , 1010i + 109], for i=20,21,..., 30.

A heuristic model is given which predicts the average number of steps needed to verify the Goldbach conjecture on a given interval. Our experimental results are in good agreement with this prediction. This adds to the evidence of the truth of the Goldbach conjecture.

1991 Mathematics Subject Classification

11P32 11Y99 

1991 Computing Reviews Classification System


Keywords and Phrases

Goldbach conjecture sum of primes primality test vector computer Cray C916 cluster of workstations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.O.L. Atkin and F. Morain. Elliptic curves and primality proving. Mathematics of Computation, 61:29–68, 1993.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Wieb Bosma and Marc-Paul van der Hulst. Primality proving with cyclotomy. PhD thesis, University of Amsterdam, December 1990.Google Scholar
  3. [3]
    J.R. Chen and T.Z. Wang, On the odd Goldbach problem, Acta Math. Sinica 32 (1989), pp. 702–718 (in Chinese).zbMATHMathSciNetGoogle Scholar
  4. [4]
    J.R. Chen and T.Z. Wang, On odd Goldbach problem under General Riemann Hypothesis, Science in China 36 (1993), pp. 682–691.zbMATHGoogle Scholar
  5. [5]
    H. Cohen and A.K. Lenstra, Implementation of a new primality test, Math. Comp. 48 (1987), pp. 103–121.zbMATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    J-M. Deshouillers, G. Effinger, H. te Riele and D. Zinoviev, A complete Vinogradov 3-primes theorem under the Riemann hypothesis, Electronic Research Announcements of the AMS 3 (1997), pp. 99–104 (September 17, 1997); Scholar
  7. [7]
    A. Granville, J. van de Lune and H.J.J. te Riele, Checking the Goldbach conjecture on a vector computer, Number Theory and Applications (R.A. Mollin, ed.), Kluwer, Dordrecht, 1989, pp. 423–433.Google Scholar
  8. [8]
    G.H. Hardy and L.E. Littlewood, Some problems of ‘Partitio Numerorum'; III: On the expression of a number as a sum of primes, Acta Math. 44 (1922/1923), pp. 1–70.CrossRefGoogle Scholar
  9. [9]
    G. Jaeschke, On strong pseudoprimes to several bases, Math. Comp. 61 (1993), pp. 915–926.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    L. Kaniecki, On šnirelman's constant under the Riemann hypothesis, Acta. Arithm. 72 (1995), pp. 361–374.zbMATHMathSciNetGoogle Scholar
  11. [11]
    FranÇois Morain. Courbes Elliptiques et Tests de Primalité. PhD thesis, L'Université Claude Bernard, Lyon I, September 1990. Introduction in French, body in English.Google Scholar
  12. [12]
    O. Ramaré, On šnirel'man's Constant, Ann. Scuola Norm. Sup. Pisa 22 (1995), pp. 645–706.zbMATHGoogle Scholar
  13. [13]
    Yannick Saouter, Checking the odd Goldbach conjecture up to 10 20, Math. Comp., 67 (1998), pp. 863–866.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    L. Schoenfeld, Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x). II, Math. Comp. 30 (1976), pp. 337–360.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Mok-Kong Shen, On Checking the Goldbach conjecture, BIT 4 (1964), pp. 243–245.zbMATHCrossRefGoogle Scholar
  16. [16]
    M.K. Sinisalo, Checking the Goldbach conjecture up to 4 · 10 11, Math. Comp. 61 (1993), pp. 931–934.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    M.L. Stein and P.R. Stein, Experimental results on additive 2 bases, Math. Comp. 19 (1965), pp. 427–434.zbMATHCrossRefGoogle Scholar
  18. [18]
    I.M. Vinogradov, Representation of an odd number as a sum of three primes, Comptes Rendues (Doklady) de l'Académie des Sciences de l'URSS, 15 (1937), pp. 291–294.Google Scholar
  19. [19]
    D. Zinoviev, On Vinogradov's constant in Goldbach's ternary problem, J. Number Th. 65 (1997), pp. 334–358.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. -M. Deshouillers
    • 1
  • H. J. J. te Riele
    • 2
  • Y. Saouter
    • 3
  1. 1.Mathématiques StochastiquesUniversité Victor Segalen Bordeaux 2Bordeaux CedexFrance
  2. 2.Centre for Mathematics and Computer ScienceCWISJ AmsterdamThe Netherlands
  3. 3.Institut de Recherche en Informatique de ToulouseToulouse CedexFrance

Personalised recommendations