Trading time for space in prime number sieves

  • Jonathan P. Sorenson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1423)


A prime number sieve is an algorithm that finds the primes up to a bound n. We present four new prime number sieves. Each of these sieves gives new space complexity bounds for certain ranges of running times. In particular, we give a linear time sieve that uses only O(√n/(log log n)2) bits of space, an O l(n/ log log n) time sieve that uses O(n/((log n)l log log n)) bits of space, where l>1 is constant, and two super-linear time sieves that use very little space.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L. M., Pomerance, C., Rumely, R.: On distinguishing prime numbers from composite numbers. Annals of Mathematics 117 (1983) 173–206MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bach, E.: Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms. MIT Press, Cambridge (1985)Google Scholar
  3. 3.
    Bach, E., Shallit, J.: Algorithmic Number Theory, Vol. 1. MIT Press, Cambridge (1996)Google Scholar
  4. 4.
    Bays, C., Hudson, R.: The segmented sieve of Eratosthenes and primes in arithmetic progressions to 1012. BIT 17 (1977) 121–127MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bernstein, D. J.: Personal communication. (1998)Google Scholar
  6. 6.
    Dunten, B., Jones, J., Sorenson, J. P.: A space-efficient fast prime number sieve. Information Processing Letters 59 (1996) 79–84MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Greene, D. H., Knuth, D. E.: Mathematics for the Analysis of Algorithms. 3rd edn. BirkhÄuser, Boston (1990)Google Scholar
  8. 8.
    Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. 5th edn. Oxford University Press (1979)Google Scholar
  9. 9.
    Miller, G.: Riemann's hypothesis and tests for primality. Journal of Computer and System Sciences 13 (1976) 300–317MATHMathSciNetGoogle Scholar
  10. 10.
    Pomerance, C. (ed.): Cryptology and Computational Number Theory. Proceedings of Symposia in Applied Mathematics, Vol. 42. American Mathematical Society, Providence (1990)Google Scholar
  11. 11.
    Pritchard, P.: A sublinear additive sieve for finding prime numbers. Communications of the ACM 24(1) (1981) 18–23, 772MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Pritchard, P.: Fast compact prime number sieves (among others). Journal of Algorithms 4 (1983) 332–344MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Pritchard, P.: Linear prime-number sieves: A family tree. Science of Computer Programming 9 (1987) 17–35MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Sorenson, J. P., Parberry, I.: Two fast parallel prime number sieves. Information and Computation 144(1) (1994) 115–130MathSciNetCrossRefGoogle Scholar
  15. 15.
    Stroustrup, B.: The C++ Programming Language. 2nd edn. Addison-Wesley (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jonathan P. Sorenson
    • 1
  1. 1.Department of Mathematics and Computer ScienceButler UniversityIndianapolisUSA

Personalised recommendations