Factorization of the numbers of the form m3 + c2m2 + c1m + c0

  • Zhang Mingzhi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1423)


We give an algorithm which can factor integers of the form m 3 + c 2 m 2 + c 1 m + c 0, where the c i are small integers. It is expected that the time required is L δ and the space required is L λ where \(L = \exp (\sqrt {\log {\text{ }}n{\text{ log log }}n} ){\text{ and }}\delta {\text{ = }}r/\sqrt {6(r - 1)} {\text{, }}\lambda = 2/\sqrt {6(r - 1)} ,\), where r is the elimination exponent.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.W. Lenstra and R. Tijdlman (eds): Computational Methods in Number Theory. Math. Center tracts, No. 154, Math. Centrum Amsterdam (1982)Google Scholar
  2. 2.
    H. Cohen: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, Vol. 138, Springer-Verlag Berlin (1993).Google Scholar
  3. 3.
    A.K. Lenstra, H.W. Lenstra, M.S. Manasse, and T.M. Pollard: The Number Field Sieve. Proc. 22nd annual ACM, STOC (1990) 564–572.Google Scholar
  4. 4.
    R.D. Silverman: The Multiple Polynomial Quadratic Sieve. Math. Comp. 48 (1987) 329–339.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    L.J. Mordell: Diophantine Equations. Academic Press, London and New York (1969).Google Scholar
  6. 6.
    L.E. Dickson: History of the Theory of Number. Vol. 2, Chelsea Publishing Company, New York (1952).Google Scholar
  7. 7.
    J.M. Pollard: Factoring with Cubic Integers. Lecture Notes in Mathematics Vol. 1554, 4–10.Google Scholar
  8. 8.
    D. Coppersmith, A.M. Odlzyko, R. Schroeppel: Discrete Logarithms in GF(p). Algorithmica 1 (1986), no. 1, 1–15.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Zhang Mingzhi
    • 1
  1. 1.Sichuan Union UniversityUSA

Personalised recommendations