Skip to main content

Cyclotomy primality proving — Recent developments

  • Conference paper
  • First Online:
Algorithmic Number Theory (ANTS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1423))

Included in the following conference series:

Abstract

Primality proving by cyclotomy is an extension of the Jacobi sum primality test, initially proposed by Adleman, Rumely and Pomerance [3] and implemented by H. Cohen and A. Lenstra [7]. In his presentation of the algorithm of Adleman, Rumely and Pomerance at the Bourbaki Seminar 1981 [14], H. W. Lenstra Jr. proposed under the name of “Galois theory test” the idea to combine classical Lucas — Lehmer tests with the Jacobi sum test. This idea was first studied and implemented by Bosma and van der Hulst in their thesis [6]. In our recently completed thesis [19], we considered the topic anew, from a slightly changed perspective and made an implementation which allowed establishing new general primality testing records. In this paper we shall give an overview of cyclotomy from the perspective of the recent research and implementation. We also discuss the drawbacks of the algorithm — the overpolynomial run time and lack of certificates — and mention some open problems which may lead to future improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.M.Adleman, H.W.Lenstra, Jr., “Finding irreducible polynomials over finite fields”, Proc. 18-th Ann. ACM Symp. on Theory of Computing (STOC) 1986, pp. 350–355

    Google Scholar 

  2. W.Adams, D.Shanks: “Strong Primality Tests That are not Sufficient”; Math. Comp. vol. 39, Nr. 159 (July 1982), pp. 255–300.

    Article  MATH  MathSciNet  Google Scholar 

  3. L.M. Adleman, C. Pomerance, R.S. Rumely: “On Distinguishing Prime Numbers from Composite Numbers”, Ann. Math. 117 (1983), pp. 173–206

    Article  MATH  MathSciNet  Google Scholar 

  4. A.O.L. Atkin, F.Morain: “Elliptic curves and Primality Proving.”, Math. Comp., vol 61 (1993), pp. 29–68.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.Brillhart, D.H.Lehmer, J.L.Selfridge: “New Primality Criteria and Factorization of 2m±1”, Math. of Comp., vol. 29, Number 130 (April 1975), pp. 620–647.

    Article  MATH  MathSciNet  Google Scholar 

  6. W.Bosma and M.van der Hulst: “Primality proving with cyclotomy”, Doctoral Thesis, Universiteit van Amsterdam 1990.

    Google Scholar 

  7. H.Cohen, H.W.Lenstra Jr.: “Primality Testing and Jacobi sums”, Math. Comp. vol 48 (1984), pp 297–330.

    Article  MathSciNet  Google Scholar 

  8. http://www.inf.ethz.ch/personal/mihailes, Homepage of Cyclotomy, Preda MihĂilescu.

    Google Scholar 

  9. Dijkstra, E.; Scholten, C.: “Predicate calculus and program semantics”, Springer Verlag (1990)

    Google Scholar 

  10. http://lix.polytechnique.fr/ morain/Prgms/ecpp.francais.html, Site for downloading the elliptic curve primality test software of F.Morain.

    Google Scholar 

  11. S.Goldwasser, J.Kilian: “Almost all primes can be quickly certified”. Proc. 18-th Annual ACM Symp. on Theory of Computing (1986), 316–329.

    Google Scholar 

  12. D.E.Knuth: “The art of computer programming”, Vol.2, Semi numerical algorithms, Addison-Wesley, Reading, Mass. second edition, 1981.

    Google Scholar 

  13. S.Lang: Algebraic Number Theory, Chapter IV, Addison Wesley Series in Mathematics.

    Google Scholar 

  14. H.W.Lenstra Jr.: “Primality Testing Algorithm s (after Adleman, Rumely and Williams)”, Seminaire Bourbaki # 576, Lectures Notes in Mathematics, vol 901, pp 243–258

    Google Scholar 

  15. H.W.Lenstra Jr.: “Galois Theory and Primality Testing”, in “Orders and Their Applications, Lecture Notes in Mathematics, vol 1142, (1985) Springer Verlag

    Google Scholar 

  16. H.W.Lenstra Jr.: “Divisors in residue classes”, Math. Comp. vol 48 (1984), pp 331–334.

    Article  MathSciNet  Google Scholar 

  17. LiDIA Group: ”LiDIA — A library for computational number theory”, TH Darmstadt, Germany, 1996

    Google Scholar 

  18. D.H.Lehmer: “Computer technology applied to the theory of numbers”, MAA Studies in Mathematics.

    Google Scholar 

  19. MihĂilescu, P.M.: “Cyclotomy of Rings & Primality Testing”, dissertation 12278, ETH Zürich, 1997.

    Google Scholar 

  20. MihĂilescu, P.M., “Advances in Cyclotomy Primality Proving”, EMail to the NMBRTHRY mailing list; available on http://listserv.nodak.edu/archives/nbrthry.html, November 1997

    Google Scholar 

  21. MihĂilescu, P.M., “New Wagstaff Prime Proved”, EMail to the NMBRTHRY mailing list; available on http://listserv.nodak.edu/archives/nbrthry.html, January 1998

    Google Scholar 

  22. Morain, F.: “New Ordinary Primality Proving Record”, EMail to the NMBRTHRY mailing list; available on http://listserv.nodak.edu/archives/nbrthry.html, October 1997

    Google Scholar 

  23. Morain,F.:“Primality Proving Using Elliptic Curves: An Update”, Preprint, to appear in Proceedings ANTS III (1998).

    Google Scholar 

  24. Plaisted, D. A.: “Fast verification, testing and generation of large primes”, Theoretical Computer Science, vol 9 (1979), pp. 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  25. H.Riesel: “Prime Numbers and Computer Methods for Factorization”, BirkhÄuser, 1994

    Google Scholar 

  26. Toom,A.L.: Doklady Akad. Nauk SSSR 150 (1963), 496–498.

    MATH  MathSciNet  Google Scholar 

  27. B.L.van der Waerden: Algebra I, p. 87, Springer

    Google Scholar 

  28. A.E Western: “On Lucas and Pepin's Test for Primeness of Mersenne Numbers”, Journal of the London Math. Society, vol 7/I (1932)

    Google Scholar 

  29. H.C. Williams: “Primality testing on a computer”, Ars Combin. vol 5 (1978), pp 127–185.

    MATH  MathSciNet  Google Scholar 

  30. H.C.Williams, J.S.Judd: “Some algorithms for prime testing, using generalized Lehmer functions”, Math. Comp. vol 30 (1976), 867–886.

    Article  MATH  MathSciNet  Google Scholar 

  31. H.C.Williams, C.R.Zarnke: “Some Prime Numbers of the Forms 2A3n + 1 and 2A3n−1”, Math. Comp., vol. 26 (October 1972), pp. 995–998.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joe P. Buhler

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

MihĂilescu, P. (1998). Cyclotomy primality proving — Recent developments. In: Buhler, J.P. (eds) Algorithmic Number Theory. ANTS 1998. Lecture Notes in Computer Science, vol 1423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054854

Download citation

  • DOI: https://doi.org/10.1007/BFb0054854

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64657-0

  • Online ISBN: 978-3-540-69113-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics