Advertisement

Combining geometric and probabilistic structure for active recognition of 3D objects

  • Stéphane Herbin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1407)

Abstract

Direct perception is incomplete: objects may show ambiguous appearances, and sensors have a limited sensitivity. Consequently, the recognition of complex 3D objects necessitates an exploratory phase to be able to deal with complex scenes or objects.

The variation of object appearance when the viewpoint is modified or when the sensor parameters are changed is an idiosyncratic feature which can be organized in the form of an aspect graph.

Standard geometric aspect graphs are difficult to build. This article presents a generalized probabilistic version of this concept. When fitted with a Markov chain dependance, the aspect graph acquires a quantitative predictive power. Tri-dimensional object recognition becomes translated into a problem of Markov chain discrimination. The asymptotic theory of hypothesis testing, in its relation to the theory of large deviations, gives then a global evaluation of the statistical complexity of the recognition problem.

Keywords

3D object recognition active vision aspect graphs Markov chains statistical hypothesis testing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Arbel and F.P. Ferrie. Informative views and sequential recognition. In Proc. Fourth European Conference on Computer Vision, Cambridge, England, April 14–18, pages I:469–481. 1996.Google Scholar
  2. 2.
    J. Ben-Arie. The probabilistic peaking effect of viewed angles and distances with applications to 3-D object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(8):760–774, 1990.CrossRefGoogle Scholar
  3. 3.
    P. Billingsley. Statistical Inference for Markov Processes. The University of Chicago Press, Chicago, London, 1961.Google Scholar
  4. 4.
    G. Bradski and S. Grossberg. Fast learning VIEWNET architectures for recognizing three-dimensional objects from multiple two-dimensional views. Neural Networks, 8(7/8):1053–1080, 1995.CrossRefGoogle Scholar
  5. 5.
    J.B. Burns, R.S. Weiss, and E.M. Riseman. View variation of point-set and linesegment features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(1):51–68, 1993.CrossRefGoogle Scholar
  6. 6.
    A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Jones and Bartlett Publishers, Boston, 1993.Google Scholar
  7. 7.
    S.J. Dickinson, H.I. Christensen, J. Tsotsos, and G. Olofsson. Active object recognition integrating attention and viewpoint control. In J-O. Eklundh, editor, Proc. Third European Conference on Computer Vision, Stockholm, Sweden, May 2–6, number 801 in Lecture Notes in Computer Science, pages 3–14. Springer Verlag, Berlin, 1994.Google Scholar
  8. 8.
    David W. Eggert, Kevin W. Bowyer, Charles R. Dyer, Henrik I. Christensen, and Dmitry B. Goldgof. The scale space aspect graph. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11):1114–1130, November 1993.CrossRefGoogle Scholar
  9. 9.
    L.M.J. Florack, B.M. ter Haar Romeny, J.J. Koenderink, and M.A. Viergever. Scale and the differential structure of images. Image and Vision Computing, 10:376–388, 1992.CrossRefGoogle Scholar
  10. 10.
    W.T. Freeman. Exploiting the generic viewpoint assumption. International Journal of Computer Vision, 20(3):243, 1996.CrossRefGoogle Scholar
  11. 11.
    J. Gårding and T. Lindeberg. Direct computation of shape cues using scale-adapted spatial derivative operators. International Journal of Computer Vision, 17(2):163–191, February 1996.CrossRefGoogle Scholar
  12. 12.
    M.R. Garey and D.S. Johnson. Computers and Intractability — A guide to the theory of NP-completeness. W.H. Freeman, San Francisco, 1979.Google Scholar
  13. 13.
    Y. Gdalyahu and D. Weinshall. Measures for silhouettes resemblance and representative silhouettes of curved objects. In B.F. Buxton and R. Cipolla, editors, Proc. Fourth European Conference on Computer Vision, Cambridge, England, April 14–18, volume 1065 of Lecture Notes in Computer Science, pages 363–375. Springer Verlag, Berlin, Heidelberg, New York, 1996.Google Scholar
  14. 14.
    S. Herbin. Recognizing 3D objects by generating random actions. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, June 18–20, pages 35–40, 1996.Google Scholar
  15. 15.
    S. Herbin. Eléments pour la formalisation d'une reconnaissance active — application à la vision tri-dimensionnelle. Thèse de mathématiques appliquées, Ecole Normale Supérieure de Cachan, Juillet 1997. In french.Google Scholar
  16. 16.
    D. Kazakos. Asymptotic error probability expressions for multihypothesis testing using multisensor data. IEEE Transactions on Systems, Man, and Cybernetics, 21(5):1101–1114, 1991.MathSciNetCrossRefGoogle Scholar
  17. 17.
    J. Köbler, U. Schöning, and J. Torn. The Graph Isomorphism Problem: Its Structural Complexity. Birkhauser, Cambridge, MA, 1993.Google Scholar
  18. 18.
    J. Koenderink. Solid Shape. MIT Press, Cambridge Ma, 1990.Google Scholar
  19. 19.
    J.J. Koenderink and A.J. van Doorn. The singularities of the visual mapping. Biological Cybernetics, 24:51–59, 1976.MATHCrossRefGoogle Scholar
  20. 20.
    T. Lindeberg. Scale-space theory: A basic tool for analysing structures at different scales. Journal of Applied Statistics, 21(2):224–270, 1994.Google Scholar
  21. 21.
    T. Lindeberg. Scale-Space Theory in Computer Vision. 1994.Google Scholar
  22. 22.
    S. Natarajan. Large deviations, hypotheses testing, and source coding for finite markov chains. IEEE Transactions on Information Theory, 31(3):360–365, 1985.MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Petitjean. The enumerative geometry of projective algebraic surfaces and the complexity of aspect graphs. International Journal of Computer Vision, 19(3):261–287, 1996.CrossRefGoogle Scholar
  24. 24.
    S. Petitjean, J. Ponce, and D. Kriegman. Computing exact aspect graphs of curved objects: algebraic surfaces. International Journal of Computer Vision, 9(3):231–255, 1992.CrossRefGoogle Scholar
  25. 25.
    R.P.N. Rao and D.H. Ballard. An active vision architecture based on iconic representations. Artificial Intelligence, 78(1–2):461–505, October 1995.CrossRefGoogle Scholar
  26. 26.
    J.H. Rieger. On the complexity and computation of view graphs of piecewise-smooth algebraic surfaces. Technical Report FBI_HH_M_228/93, Hamburg UniveritÄt, 1993.Google Scholar
  27. 27.
    R.D. Rimey and C.M. Brown. Control of selective perception using bayes nets and decision-theory. International Journal of Computer Vision, 12(2–3):173–207, April 1994.CrossRefGoogle Scholar
  28. 28.
    M. Seibert and A.M. Waxman. Adapative 3D-object recognition from multiple views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:107–124, 1992.CrossRefGoogle Scholar
  29. 29.
    E Seneta. Non-negative matrices and Markov chains. Springer Verlag, New York, second edition, 1981.Google Scholar
  30. 30.
    L.G. Shapiro and M.S. Costa. Appearance-based 3D object recognition. In M. Hebert, J. Ponce, T.E. Boult, A. Gross, and D. Forsyth, editors, Proc. International Workshop on 3-D Object Representation in Computer Vision, New York City, NY, USA, 5–7 Dec 1994, volume 994 of Lecture Notes in Computer Science, pages 51–64. Springer Verlag, Berlin, 1995.Google Scholar
  31. 31.
    I. Shimshoni and J. Ponce. Probabilistic 3D object recognition. In Proc. Fifth International Conference on Computer Vision, Cambridge, MA, USA, June 20–22, pages 488–493, 1995.Google Scholar
  32. 32.
    K.A. Tarabanis, P.K. Allen, and R.Y. Tsai. A survey of sensor planning in computer vision. IEEE Transactions in Robotics and Automation, 11(1):86–104, February 1995.CrossRefGoogle Scholar
  33. 33.
    M. Tistarelli. Active space-variant object recognition. Image and Vision Computing, 13(3):215–226, April 1995.CrossRefGoogle Scholar
  34. 34.
    J.K. Tsotsos. On the relative complexity of active vs. passive visual search. International Journal of Computer Vision, 7(2):127–141, January 1992.CrossRefGoogle Scholar
  35. 35.
    T. van Effelterre. Calcul exact du graphe d'aspect de solides de révolution. Thèse de doctorat, Université de Rennes I, 1995.Google Scholar
  36. 36.
    S. Vinther and R. Cipolla. Active 3D object recognition using 3D affine invariants. In J-O. Eklundh, editor, Proc. Third European Conference on Computer Vision, Stockholm, Sweden, May 2–6, number 801 in Lecture Notes in Computer Science, pages 15–24. Springer Verlag, Berlin, 1994.Google Scholar
  37. 37.
    D. Weinshall, M. Werman, and N. Tishby. Stability and likelihood of views of three dimensional objects. In J-O. Eklundh, editor, Proc. Third European Conference on Computer Vision, Stockholm, Sweden, May 2–6, number 800 in Lecture Notes in Computer Science, pages 24–35. Springer Verlag, Berlin, 1994.Google Scholar
  38. 38.
    D. Wilkes and J.K. Tsotsos. Active object recognition. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Champaign, IL, June 15–18, pages 136–141, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Stéphane Herbin
    • 1
  1. 1.Ecole Normale Supérieure de Cachan, Centre de Mathématiques et de Leurs ApplicationsCNRSCachan CedexFrance

Personalised recommendations