Matching hierarchical structures using association graphs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1407)


It is well known that the problem of matching two relational structures can be posed as an equivalent problem of finding a maximal clique in a (derived) “association graph.” However, it is not clear how to apply this approach to computer vision problems where the graphs are hierarchically organized, i.e. are trees, since maximal cliques are not constrained to preserve the partial order. Here we provide a solution to the problem of matching two trees, by constructing the association graph using the graph-theoretic concept of connectivity. We prove that in the new formulation there is a one-to-one correspondence between maximal cliques and maximal subtree isomorphisms, and show how to solve the matching problem using simple “replicator” dynamical systems developed in theoretical biology. Such continuous solutions to discrete problems can motivate analog and biological implementations. We illustrate the power of the approach by matching articulated and deformed shapes described by shock trees.


Rooted Tree Maximal Clique Shock Tree Replicator Dynamic Shape Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. P. Ambler, H. G. Barrow, C. M. Brown, R. M. Burstall, and R. J. Popplestone. A versatile computer-controlled assembly system. In Proc. 3rd Int. J. Conf. Artif. Intell., pages 298–307, Stanford, CA, 1973.Google Scholar
  2. 2.
    D. H. Ballard and C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, N.J, 1982.Google Scholar
  3. 3.
    H. G. Barrow and R. M. Burstall. Subgraph isomorphism, matching relational structures, and maximal cliques. Inform. Process. Lett., 4(4):83–84, 1976.zbMATHCrossRefGoogle Scholar
  4. 4.
    L. E. Baum and J. A. Eagon. An inequality with applications to statistical estimation for probabilistic functions of markov processes and to a model for ecology. Bull. Amer. Math. Soc., 73:360–363, 1967.zbMATHMathSciNetGoogle Scholar
  5. 5.
    R. C. Bolles and R. A. Cain. Recognizing and locating partially visible objects: The locus-feature-focus method. Int. J. Robotics Res., 1(3):57–82, 1982.Google Scholar
  6. 6.
    I. M. Bomze. Evolution towards the maximum clique. J. Global Optim., 10:143–164, 1997.zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    I. M. Bomze, M. Pelillo, and R. Giacomini. Evolutionary approach to the maximum clique problem: Empirical evidence on a larger scale. In I. M. Bomze, T. Csendes, R. Horst, and P. M. Pardalos, editors, Developments in Global Optimization, pages 95–108, Dordrecht, The Netherlands, 1997. Kluwer.Google Scholar
  8. 8.
    J. F. Crow and M. Kimura. An Introduction to Population Genetics Theory. Harper & Row, New York, 1970.zbMATHGoogle Scholar
  9. 9.
    R. A. Fisher. The Genetical Theory of Natural Selection. Oxford University Press, London, UK, 1930.zbMATHGoogle Scholar
  10. 10.
    M. Garey and D. Johnson. Computer and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, 1979.Google Scholar
  11. 11.
    F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.Google Scholar
  12. 12.
    J. Hofbauer and K. Sigmund. The Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge, UK, 1988.zbMATHGoogle Scholar
  13. 13.
    R. Horaud and T. Skordas. Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Pattern Anal. Machine Intell., 11(11):1168–1180, 1989.CrossRefGoogle Scholar
  14. 14.
    B. B. Kimia, A. Tannenbaum, and S. W. Zucker. Shape, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space. Int. J. Comp. Vision, 15:189–224, 1995.CrossRefGoogle Scholar
  15. 15.
    V. Losert and E. Akin. Dynamics of games and genes: Discrete versus continuous time. J. Math. Biol., 17:241–251, 1983.zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Y. Lyubich, G. D. Maistrowskii, and Y. G. Ol'khovskii. Selection-induced convergence to equilibrium in a single-locus autosomal population. Problems of Information Transmission, 16:66–75, 1980.zbMATHGoogle Scholar
  17. 17.
    D. Marr and K. H. Nishihara. Representation and recognition of the spatial organization of three-dimensional shapes. Proc. R. Soc. Lond. B, 200:269–294, 1978.CrossRefGoogle Scholar
  18. 18.
    D. Miller and S. W. Zucker. Efficient simplex-like methods for equilibria of nonsymmetric analog networks. Neural Computation, 4(2):167–190, 1992.Google Scholar
  19. 19.
    D. Miller and S. W. Zucker. Computing with self-excitatory cliques: A model and an application to hyperacuity-scale computation in visual cortex. Neural Computation, 1998. To be published.Google Scholar
  20. 20.
    T. S. Motzkin and E. G. Straus. Maxima for graphs and a new proof of a theorem of Turán. Canad. J. Math., 17:533–540, 1965.zbMATHMathSciNetGoogle Scholar
  21. 21.
    H. Ogawa. Labeled point pattern matching by delaunay triangulation and maximal cliques. Pattern Recognition, 19:35–40, 1986.CrossRefGoogle Scholar
  22. 22.
    P. M. Pardalos and J. Xue. The maximum clique problem. J. Global Optim., 4:301–328, 1994.zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Pelillo. Relaxation labeling networks for the maximum clique problem. J. Artif. Neural Networks, 2:313–328, 1995.Google Scholar
  24. 24.
    M. Pelillo. The dynamics of nonlinear relaxation labeling processes. J. Math. Imaging Vision, 7:309–323, 1997.MathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Pelillo. A unifying framework for relational structure matching. Submitted, 1997.Google Scholar
  26. 26.
    M. Pelillo and A. Jagota. Feasible and infeasible maxima in a quadratic program for maximum clique. J. Artif. Neural Networks, 2:411–420, 1995.Google Scholar
  27. 27.
    M. Pelillo, K. Siddiqi, and S. W. Zucker. Attributed tree matching and maximum weight cliques. Submitted, 1997.Google Scholar
  28. 28.
    F. Pla and J. A. Marchant. Matching feature points in image sequences through a region-based method. Comp. Vision Image Understanding, 66:271–285, 1997.CrossRefGoogle Scholar
  29. 29.
    B. Radig. Image sequence analysis using relational structures. Pattern Recognition, 17:161–167, 1984.CrossRefGoogle Scholar
  30. 30.
    H. Rom and G. Medioni. Hierarchical decomposition and axial shape description. IEEE Trans. Pattern Anal. Machine Intell., 15(10):973–981, 1993.CrossRefGoogle Scholar
  31. 31.
    A. Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene labeling by relaxation operations. IEEE Trans. Syst. Man Cybern., 6:420–433, 1976.zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    H. Samet. Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA, 1990.Google Scholar
  33. 33.
    K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker. Shock graphs and shape matching. In Proc. Int. Conf. Gomp. Vision, pages 222–229, Bombay, India, 1998.Google Scholar
  34. 34.
    V. Venkateswar and R. Chellappa. Hierarchical stereo and motion correspondence using feature groupings. Int. J. Comp. Vision, 15:245–269, 1995.CrossRefGoogle Scholar
  35. 35.
    J. W. Weibull. Evolutionary Game Theory. MIT Press, Cambridge, MA, 1995.zbMATHGoogle Scholar
  36. 36.
    B. Yang, W. E. Snyder, and G. L. Bilbro. Matching oversegmented 3D images using association graphs. Image Vision Comput., 7:135–143, 1989.CrossRefGoogle Scholar
  37. 37.
    S. Zhu and A. L. Yuille. FORMS: A flexible object recognition and modelling system. Int. J. Comp. Vision, 20(3):187–212, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  1. 1.Center for Computational Vision & ControlYale UniversityUSA

Personalised recommendations