Advertisement

Mining flexible multiple-level association rules in all concept hierarchies

Extended abstract
  • Li Shen
  • Hong Shen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1460)

Abstract

We introduce the problem of mining FML (flexible multiple-level) association rules in all concept hierarchies related to a set of user-interested database attributes, as interesting association rules among data items may occur at multiple levels of multiple relevant concept hierarchies. We present a complete classification of all FML rules and show that direct application of previous research can find only a small part of strong FML rules. We propose an efficient method to generate all strong FML rules in all concept hierarchies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal R., Mannila H., Srikant R., Toivonen H., Verkamo A.: Fast Discovery of Association Rules. In: Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press (1996)Google Scholar
  2. 2.
    Agrawal R., Imielinski I., Swami A.: Mining Associations between Sets of Items in Massive Databases. In: Proc. of ACM SIGMOD Conf., Washington D.C. (1993)Google Scholar
  3. 3.
    Chen M., Han J., Yu P.S.: Data Mining: An Overview from Database Perspective. In: IEEE Transactions on Knowledge and Data Engineering, Vol.8, No.6 (1996)Google Scholar
  4. 4.
    Han J., Pu Y.: Discovery of Multiple-level Association Rules from Large Databases. In: Proc. of the 21st VLDB Conference, Zurich, Switzerland (1995)Google Scholar
  5. 5.
    Han J., Pu Y.: Dynamic Generation and Refinement of Concept Hierarchies for Knowledge Discovery in Databases. In: AAAI'94 Workshop on Knowledge Discovery in Databases (KDD'94), Seattle, WA (1994) 157–168Google Scholar
  6. 6.
    Park J. S., Chen M., Yu P. S.: An Effective Hash-Based Algorithm for Mining Association Rules. In: Proc. of ACM-SIGMOD Conf., San Jose, CA (1995)Google Scholar
  7. 7.
    Savasere A., Omiecinski E., Navathe S.: An Efficient Algorithm for Mining Association Rules in Large Databases. In: 21st VLDB Conf., Zurich, Switzerland (1995)Google Scholar
  8. 8.
    Srikant R., Agrawal R.: Mining Quantitative Association Rules in Large Relational Tables. In: Proc. of ACM SIGMOD Conf., Montreal, Canada (1996)Google Scholar
  9. 9.
    Srikant R., Agrawal R.: Mining Generalized Association Rules. In: Proc. of the 21st VLDB Conf., Zurich, Switzerland (1995)Google Scholar
  10. 10.
    Zaki M. J., Parthasarathy S., Li W.: A Localized Algorithm for Parallel Association Mining. In: 9th Annual ACM Symposium on Parallel Algorithms and Architectures, Newport, Rhode Island (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Li Shen
    • 1
  • Hong Shen
    • 1
  1. 1.School of Computing and Information TechnologyGriffith UniversityNathanAustralia

Personalised recommendations