Automatic derivation of terminological properties from database schemes

  • L. Palopoli
  • D. Saccà
  • D. Ursino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1460)


Many organizations nowadays own several information systems which represent a mine of possible information resources whose effective exploitation is becoming a key issue in many application contexts. A major problem to be faced within such contexts is the semantic normalization of scheme objects used in heterogeneous, independent and pre-existing databases as to single out differences and similitudes among data whereby a consistent, integrated view of available information can be obtained. To solve large instances of this problem, the development of automatic support tools appears to be mandatory. This paper gives a contribution in this framework by presenting algorithms for extracting useful properties holding among objects belonging to sets of pre-existing database schemes. The algorithms are capable of deriving both nominal and structural properties of scheme objects starting from database scheme descriptions.


Database Scheme Nominal Property Semantic Normalization Conditional Property Semistructured Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Batini, S. Castano, V. De Antonellis, M.G. Fugini, B. Pernici, Analysis of an Inventory of Information Systems in the Public Administration, Requirement Engineering Journal 1(1), 47–62, 1996.CrossRefGoogle Scholar
  2. 2.
    C. Batini, M. Lenzerini, A methodology for data schema integration in the entity relationship model, IEEE TSE10(6), 650–664, 1984.Google Scholar
  3. 3.
    C. Batini, M. Lenzerini, S.B. Navathe, A comparative analysis of methodology for database scheme integration, ACM CS 18(4), 323–364, 1986.CrossRefGoogle Scholar
  4. 4.
    M.W.Bright, A.R.Hurson, S.Pakzad, Automated Resolution of Semantic Heterogeneity in Multidatabases, ACM Transactions on Database Systems 19(2), 212–253, 1994.CrossRefGoogle Scholar
  5. 5.
    A. Bonifati, L. Palopoli, D. Saccà, D. Ursino, Discovering Description Logic assertions from database schemes, Proceedings of DL '97,144–148, Gif Sur Yvette, 1997.Google Scholar
  6. 6.
    A. Bonífati, L.Palopoli, D. Saccà, D. Ursino, Automatic extraction of database scheme semantic properties using Knowledge Discovery techniques, Proceedings of IADT'98, Berlin. Forthcoming.Google Scholar
  7. 7.
    S. Castano, V. De Antonellis, Semantic Dictionary Design for Database Interoperability, Proceedings of ICDE'97, Birmingham, 1997.Google Scholar
  8. 8.
    S. Castano, V. De Antonellis, Reference Conceptual Architecture for Reengineering Information Systems, International Journal of Cooperative Information Systems 4(2–3), 213–235, 1995.CrossRefGoogle Scholar
  9. 9.
    S. Castano, V. De Antonellis, M.G.Fugini, B.Pernici, Conceptual Schema Analysis: Techniques and Applications, Rapporto Interno, Politecnico di Milano 95–060, 1995.Google Scholar
  10. 10.
    P. Fankhauser, M. Kracker, E.J. Neuhold, Semantic vs. Structural Resemblance of Classes, SIMOD RECORD, 20(4), 1991, 59–63CrossRefGoogle Scholar
  11. 11.
    J.A.Larson, S.B.Navathe, R. Elmastri, A Theory of Attribute Equivalence in Databases with Application to Schema Integration, IEEE TSE 15(4), 449–463, 1989.zbMATHGoogle Scholar
  12. 12.
    L. Palopoli, D. Saccà, D. Ursino, Semi-automatic, semantic discovery of properties from database schemes, Proc. of IDEAS'98, Cardiff. Forthcoming.Google Scholar
  13. 13.
    S.Spaccapietra, C.Parent, View Integration: A Step Forward in Solving Structural Conflicts, IEEE TKDE 6(2), 258–274, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • L. Palopoli
    • 1
  • D. Saccà
    • 1
  • D. Ursino
    • 1
  1. 1.DEISUniv. della CalabriaRendeItaly

Personalised recommendations