Exploiting symmetry in linear time temporal logic model checking: One step beyond

  • K. Ajami
  • S. Haddad
  • J. -M. Ilié
Regular Sessions Model Checking
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1384)


Model checking is a useful technique to verify properties of dynamic systems but it has to cope with the state explosion problem. By simultaneous exploitation of symmetries of both the system and the property, the model checking can be performed on a reduced quotient structure [2,6,7]. In these techniques a property is specified within a temporal logic formula (CTL*) and the symmetries of the formula are obtained by a syntactical checking. We show here that these approaches fail to capture symmetries in the LTL path subformulas. Thus we propose a more accurate method based on local symmetries of the associated Büchi automaton. We define an appropriate quotient structure for the synchronized product of the Büchi automaton and the global state transition graph. We prove that model checking can be performed over this quotient structure leading to efficient algorithms.


Temporal Logic LTL Symmetries Büchi automata Model Checking Verification 


  1. [1]
    G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad, “On Well-formed Colored Nets and their Symbolic Reachability Graph”, proc. of 11th International Conference on Application and Theory of Petri Nets, Paris-France, June 1990.Google Scholar
  2. [2]
    E. Clarke, T. Filkorne, S. Jha, “Exploiting Symmetry In Temporal Logic Model Checking”, 5th Computer Aided Verification (CAV), June 1993.Google Scholar
  3. [3]
    E. Clarke, O. Grumberg, D. Long,“Verification Tools for Finit-State Concurrent Systems”, “A Decade of Concurrency-Reflections and Perspectives”, LNCS vol 803, 1994.Google Scholar
  4. [4]
    C. Courcoubetis, M. Vardi, P.Wolper, M. Yannakakis, “Memory Efficient Algorithms for the Verification of Temporal Properties”, In proceedings of CAV'90, North Holland, DIMACS 30. 1990.Google Scholar
  5. [5]
    M. Dam. “Fixed points of Büchi automata”, In R. Shymanasundar, editor, Foundations of Software Technology and theoretical Computer Science, volume 652 of LNCS, pages 39–50, Springer-Verlag, 1992.Google Scholar
  6. [6]
    E.A. Emerson, A. Prasad Sistla, “Symmetry and Model Checking”, In Formal Methods and System Design 9, pp 105–131, 1996.CrossRefGoogle Scholar
  7. [7]
    E.A. Emerson, A. Prasad Sistla, “Symmetry and Model Checking”, 5th conference on Computer Aided Verification (CAV), June 1993.Google Scholar
  8. [8]
    E.A. Emerson, A. Parsad Sistla, “Utilizing Symmetry when Model Checking under Fairness Assumptions: An Automata-theoric Approach”, 7th CAV, LNCS 939, pp. 309–324, Liège, Belgium, July 1995.Google Scholar
  9. [9]
    E.A. Emerson, “Temporal and Modal Logic”, HandBook of Theoretical Computer Science, Volume B, J. van Leeuwen (eds), 1990.Google Scholar
  10. [10]
    E.A. Emerson and Chin-Laung Lei, “Modalities for Model Checking: Branching Time Stricks Back”, In Proc of 12h Annual Symposium on Principles of Programming Languages, New-Orleans, Louisiana, January 1985.Google Scholar
  11. [11]
    R. Gerth, D. Peled, M. Vardi, P. Wolper, “Simple On-the-fly Automatic Verification of linear Temporal Logic”, Protocol Specification Testing and Verification, 1995, Warsaw, Poland.Google Scholar
  12. [12]
    S. Haddad, JM. Ilié, B. Zouari, M. Taghelit, “Symbolic Reachability Graph and Partial Symmetries”, In Proc. of the 16th ICATPN, Torino, Italy, June 1995.Google Scholar
  13. [13]
    J-M. Ilié, K. Ajami, “Model Checking through the Symbolic Reachability Graph”, in Proc of TapSoft'97 — CAAP, pp 213–224, Lille, France, Springer-Verlag, LNCS 1214, Avril 1997.Google Scholar
  14. [14]
    K. Jensen, G. Rozenberg (eds), “High Level Petri Nets, Theory and Application”, Springer-Verlag, 1991.Google Scholar
  15. [15]
    Z. Manna, A. Pnueli. “The Temporal Logic of Reactive and Concurrent Systems: Specification”, Springer-Verlag, 1992.Google Scholar
  16. [16]
    F. Michel, P. Azéma, F. Vernadat. “Permutable Agents and Process Algebra”, In Proc. of TACAS'96, Passau, Germany, 1996, Springer-Verlag, LNCS 1055.Google Scholar
  17. [17]
    C. Norris IP and D. Dill, “Better Verification Through Symmetry”, In Formal Methods in System Design, Vol 9, August 96, pp 41–76.Google Scholar
  18. [18]
    D. Park, “Concurrency and Automata on Infinite Sequences”, LNCS vol 114, 1984.Google Scholar
  19. [19]
    K. Schmidt, “Symmetry Calculation”, Workshop CSP Warschau 1995.Google Scholar
  20. [20]
    M.Y. Vardi, “Alternating Automata and Program Verification”, Computer Science Today: Recent Trends and Developments.LNCS,Vol. 1000, Springer-Verlag 1995.Google Scholar
  21. [21]
    M. Y. Vardi, “An Automata-theoretic approach to linear temporal logic (banff' 94), LNCS, 1043, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • K. Ajami
    • 1
  • S. Haddad
    • 2
  • J. -M. Ilié
    • 1
  1. 1.LIP6 - CNRS ERS 587 Univ. Pierre & Marie CurieParis Cedex 05
  2. 2.LAMSADE - CNRS URA 825 Univ. Paris DauphineParis

Personalised recommendations