Skip to main content

A new public-key cryptosystem as secure as factoring

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1403)

Abstract

This paper proposes a novel public-key cryptosystem, which is practical, provably secure and has some other interesting properties as follows:

  1. 1.

    Its trapdoor technique is essentially different from any other previous schemes including RSA-Rabin and Diffie-Hellman.

  2. 2.

    It is a probabilistic encryption scheme.

  3. 3.

    It can be proven to be as secure as the intractability of factoring n = p2q (in the sense of the security of the whole plaintext) against passive adversaries.

  4. 4.

    It is semantically secure under the p-subgroup assumption, which is comparable to the quadratic residue and higher degree residue assumptions.

  5. 5.

    Under the most practical environment, the encryption and decryption speeds of our scheme are comparable to (around twice slower than) those of elliptic curve cryptosystems.

  6. 6.

    It has a homomorphic property: E(m0, r0)E(m1, r1) mod n = E(@#@ m0 + m1, r2), where E(m, r) means a ciphertext of plaintext m as randomized by r and m0+ m1 < p.

  7. 7.

    Anyone can change a ciphertext, C = E(m, r), into another ciphertext, C′ = Chr' mod n, while preserving plaintext of C (i.e., C′ = E(m,r″)), and the relationship between C and C′ can be concealed.

Keywords

  • Elliptic Curve
  • Modular Multiplication
  • Discrete Logarithm Problem
  • Quadratic Residue
  • Encryption Function

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adleman, L.M. and McCurley, K.S.: Open Problems in Number Theoretic Complexity,II (open problems: C7, O7a and O7b), Proc. of ANTS-I, LNCS 877, Springer-Verlag, pp.291–322 (1995).

    Google Scholar 

  2. Ajtai, M. and Dwork, C.: A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence, Proc. of STOC'97, pp. 284–293 (1997).

    Google Scholar 

  3. Alexi, W., Chor, B.Z., Goldreich, O. and Schnorr, C.P.: RSA and Rabin Functions: Certain Parts Are as Hard as the Whole, SIAM Journal of Computing, 17, 2, pp.449–457(1988).

    MathSciNet  CrossRef  Google Scholar 

  4. Bellare, M. and Rogaway, P.: Optimal Asymmetric Encryption, Proc. of Eurocrypt'94, LNCS 950, Springer-Verlag pp.92–111 (1995).

    Google Scholar 

  5. Blum, M. and Goldwasser, S.: An efficient probabilistic public-key encryption scheme which hides all partial information, Proc. of Crypto'84, LNCS 196, Springer-Verlag, pp.289–299 (1985).

    Google Scholar 

  6. Chao, J., Matsuda, N. and Tsujii, S.: Efficient construction of secure hyperelliptic discrete logarithm problems, Proc. of ICICS'97, LNCS 1334, Springer-Verlag, pp.292–301 (1997).

    Google Scholar 

  7. Chor, B. and Rivest, R.L.: A knapsack type public key cryptosystem based on arithmetic in finite fields, Proc. of Crypto'84, LNCS 196, Springer-Verlag, pp.54–65 (1985).

    Google Scholar 

  8. Cohen, J. and Fischer.: A Robust and Verifiable Cryptographically Secure Election Scheme, FOCS, pp.372–382 (1985).

    Google Scholar 

  9. Dolev, D., Dwork, C. and Naor, M.: Non-Malleable Cryptography, Proc. of STOC, pp.542–552 (1991).

    Google Scholar 

  10. Demytko, N.: A New Elliptic Curve Based Analogue of RSA, Proc. of Eurocrypt'93, LNCS 765, Springer-Verlag, pp.40–49 (1994).

    Google Scholar 

  11. Diffie, W. and Hellman, M.: New Directions in Cryptography, IEEE Trans. on Information Theory, IT-22, 6, pp.644–654 (1976).

    MathSciNet  CrossRef  Google Scholar 

  12. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms, IEEE Trans. on Information Theory, IT-31, 4, pp.469–472 (1985).

    MathSciNet  CrossRef  Google Scholar 

  13. Goldwasser, S. and Bellare, M: Lecture Notes on Cryptography, http://wwwcse.ucsd.edu/users/mihir/ (1997).

    Google Scholar 

  14. Goldwasser, S. and Micali, S.: Probabilistic Encryption, JCSS, 28, 2, pp.270–299 (1984).

    MATH  MathSciNet  Google Scholar 

  15. Hastad, J., Schrift, A.W. and Shamir, A.: The Discrete Logarithm Modulo a Composite Hides O(n) Bits, J. of Computer and System Sciences, 47, pp.376–404 (1993).

    MATH  MathSciNet  CrossRef  Google Scholar 

  16. Knuth, D.E.: The Art of Computer Programming, Addison-Wesley Publishing Co.,(1981).

    Google Scholar 

  17. Koblitz, N.: Elliptic Curve Cryptosystems, Math. Comp., 48, 177, pp.203–209 (1987).

    MATH  MathSciNet  CrossRef  Google Scholar 

  18. Koyama, K., Maurer, U. M., Okamoto, T. and Vanstone, S. A.,: New Public-key Schemes based on Elliptic Curves over the Ring Zn, Proc. of Crypto'91, LNCS 576, Springer-Verlag, pp.252–266 (1992).

    Google Scholar 

  19. Kurosawa, K., Ito, T. and Takeuchi, M.: Public Key Cryptosystem using a Reciprocal Number with the same Intractability as Factoring a Large Number, Cryptologia, 12, 4, pp.225–233 (1988).

    MATH  MathSciNet  Google Scholar 

  20. Loxton, J.H., Khoo, D.S.P., Bird, G.J. and Seberry, J.: A Cubic RSA Code Equivalent to Factorization, Journal of Cryptology, 5, 2, pp.139–150 (1992).

    MATH  MathSciNet  CrossRef  Google Scholar 

  21. Matsumoto, T. and Imai, H.: Public Quadratic Polynomial-Tuples for Efficient Signature-Verification and Message-Encryption, Proc. of Eurocrypt'88, LNCS 330, Springer-Verlag, pp.419–453 (1988).

    Google Scholar 

  22. McEliece, R.J.: A Public-Key Cryptosystem Based on Algebraic Coding Theory, DSN progress report 42-44, Jet Propulsion Laboratories, Pasadena (1978).

    Google Scholar 

  23. Merkle, R.C. and Hellman, M.E.: Hiding Information and Signatures in Trapdoor Knapsacks, IEEE Trans. on Inform. Theory, 24, pp.525–530 (1978).

    CrossRef  Google Scholar 

  24. Micali, S., Rackoff, C. and Sloan, B.: The notion of security for probabilistic cryptosystems, SIAM Journal on Computing, 17, 2, pp.412–426 (1988).

    MATH  MathSciNet  CrossRef  Google Scholar 

  25. Miller, V.S.: Use of Elliptic Curves in Cryptography, Proc. of Crypto'85, LNCS 218, Springer-Verlag, pp.417–426 (1985).

    Google Scholar 

  26. Naccache, D. and Stern, J.: A New Public-Key Cryptosystem, Proc. of Eurocrypt'97, LNCS 1233, Springer-Verlag, pp.27–436 (1997).

    Google Scholar 

  27. Okamoto, T. and Uchiyama, S.: Individual Bit Security of a New Public-Key Cryptosystem, Manuscript (1998).

    Google Scholar 

  28. Patarin, J. and Goubin, L.: Trapdoor one-way permutations and multivariate polynomials, Proc. of ICICS'97, LNCS 1334, Springer-Verlag, pp.356–368 (1997).

    Google Scholar 

  29. Patarin, J. and Goubin, L.: Asymmetric cryptography with S-Boxes, Proc. of ICICS'97, LNCS 1334, Springer-Verlag, pp.369–380 (1997).

    Google Scholar 

  30. Peralta, R.: Bleichenbacher's improvement for factoring numbers of the form N = PQ2 (private communication) (1997).

    Google Scholar 

  31. Peralta, R. and Okamoto, E.: Faster Factoring of Integers of a Special Form, IEICE Trans. Fundamentals, E79-A, 4, pp.489–493 (1996).

    Google Scholar 

  32. Pointcheval, D. and Stern, J.: Security Proofs for Signature Schemes, Proc. of Eurocrypt'96, LNCS 1070, Springer-Verlag, pp.387–398 (1996).

    Google Scholar 

  33. Pollard, J.L.: Manuscript (1997).

    Google Scholar 

  34. Rabin, M.O.: Digital Signatures and Public-Key Encryptions as Intractable as Factorization, MIT, Technical Report, MIT/LCS/TR-212 (1979).

    Google Scholar 

  35. Rivest, R., Shamir, A. and Adleman, L.: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Communications of the ACM, Vol.21, No.2, pp.120–126 (1978).

    MATH  MathSciNet  CrossRef  Google Scholar 

  36. Smith, P. and Lennon, M.: LUC: A New Public Key System, Proc. of IFIP/SEC'93, pp. 103–117, North-Holland (1993).

    Google Scholar 

  37. Tsiounis, Y. and Yung, M.: On the Security of ElGamal-based encryption, to appear in Proc. of PKC'98, LNCS, Springer-Verlag.

    Google Scholar 

  38. Williams, H.C.: A Modification of the RSA Public Key Encryption Procedure, IEEE Trans. on Inform. Theory, IT-26, 6, pp.726–729 (1980).

    CrossRef  Google Scholar 

  39. Williams, H.C.: Some Public-Key Crypto-Functions as Intractable as Factorization, Proc. of Crypto'84, LNCS 196, Springer-Verlag, pp.66–70 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okamoto, T., Uchiyama, S. (1998). A new public-key cryptosystem as secure as factoring. In: Nyberg, K. (eds) Advances in Cryptology — EUROCRYPT'98. EUROCRYPT 1998. Lecture Notes in Computer Science, vol 1403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054135

Download citation

  • DOI: https://doi.org/10.1007/BFb0054135

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64518-4

  • Online ISBN: 978-3-540-69795-4

  • eBook Packages: Springer Book Archive