Advertisement

Computing discrete logarithms with quadratic number rings

  • Damian Weber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1403)

Abstract

At present, there are two competing index calculus variants for computing discrete logarithms in (ℤ/pℤ)* in practice. The purpose of this paper is to summarize the recent practical experience with a generalized implementation covering both a variant of the Number Field Sieve and the Gaussian integer method. By this implementation we set a record with p consisting of 85 decimal digits. With regard to computational results, including the running time, we provide a comparison of the two methods for this value of p.

Keywords

Discrete Logarithms Number Field Sieve Index Calculus 

References

  1. 1.
    D. Coppersmith, A. Odlyzko, and R. Schroeppel. Discrete logarithms in GF(p). Algorithmica 1, pages 1–15, 1986.Google Scholar
  2. 2.
    Th. Denny. Lösen grosser dünnbesetzter Gleichungssysteme über endlichen Primkörpern. PhD thesis, Universität des Saarlandes/Germany, 1997.Google Scholar
  3. 3.
    Th. Denny and V. Müller. On the reduction of composed relations from the number field sieve. In Algebraic Number Theory II, number 1122 in Lecture Notes in Computer Science, 1996.Google Scholar
  4. 4.
    M. Elkenbracht-Huizing. Factoring integers with the Number Field Sieve. PhD thesis, Rijksuniversiteit te Leiden, 1996.Google Scholar
  5. 5.
    M. Elkenbracht-Huizing. A multiple polynomial general number field sieve. In Algebraic Number Theory II, number 1122 in Lecture Notes in Computer Science, 1996.Google Scholar
  6. 6.
    D. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM J. Discrete Math., 6:124–138, 1993.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Hua. Introduction to Number Theory. Springer, 1982.Google Scholar
  8. 8.
    D. E. Knuth and L. Trabb Pardo. Analysis of a simple factorization algorithm. Theoretical Computer Science, 3:321–348, 1976.MathSciNetCrossRefGoogle Scholar
  9. 9.
    P. L. Montgomery. Number field sieve with two quadratic polynomials. presentation at Centrum for Wiskunde en Informatica, Amsterdam, 1993.Google Scholar
  10. 10.
    S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Trans. on Information Theory, 24:106–110, 1978.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    O. Schirokauer. Discrete logarithms and local units. Phil. Trans. R. Soc. Lond. A 345, pages 409–423, 1993.Google Scholar
  12. 12.
    O. Schirokauer, D. Weber, and Th. F. Denny. Discrete logarithms: the effectiveness of the index calculus method. In H. Cohen, editor, Algorithmic Number Theory — ANTS II, number 1122 in Lecture Notes in Computer Science, 1996.Google Scholar
  13. 13.
    D. Weber. Computing discrete logarithms with the number field sieve. In H. Cohen, editor, Algorithmic Number Theory — ANTS II, number 1122 in Lecture Notes in Computer Science, 1996.Google Scholar
  14. 14.
    D. Weber. On the computation of discrete logarithms in finite prime fields. PhD thesis, Universität des Saarlandes/Germany, 1997.Google Scholar
  15. 15.
    D. Weber and Th. F. Denny. The solution of McCurley's challenge. 1998. To appear.Google Scholar
  16. 16.
    J. Zayer. Faktorisieren mit dem Number Field Sieve. PhD thesis, Universität des Saarlandes/Germany, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Damian Weber
    • 1
  1. 1.Institut für Techno- und WirtschaftsmathematikKaiserslauternGermany

Personalised recommendations