Abstract
First, we introduce the notion of divertibility as a protocol property as opposed to the existing notion as a language property (see Okamoto, Ohta [OO90]). We give a definition of protocol divertibility that applies to arbitrary 2-party protocols and is compatible with Okamoto and Ohta's definition in the case of interactive zero-knowledge proofs. Other important examples falling under the new definition are blind signature protocols. We propose a sufficiency criterion for divertibility that is satisfied by many existing protocols and which, surprisingly, generalizes to cover several protocols not normally associated with divertibility (e.g., Diffie-Hellman key exchange). Next, we introduce atomic proxy cryptography, in which an atomic proxy function, in conjunction with a public proxy key, converts ciphertexts (messages or signatures) for one key into ciphertexts for another. Proxy keys, once generated, may be made public and proxy functions applied in untrusted environments. We present atomic proxy functions for discrete-log-based encryption, identification, and signature schemes. It is not clear whether atomic proxy functions exist in general for all public-key cryptosystems. Finally, we discuss the relationship between divertibility and proxy cryptography.
Chapter PDF
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Matt Blaze, Martin Strauss. Atomic Proxy Cryptography. AT&T Labs-Research TR98.5.1 http://www.reseeurch.att.com/library/trs
Gerrit Bleumer. On Protocol Divertibility. AT&T Labs-Research TR97.34.2 http://www.research.att.com/library/trs
Mike V. D. Burmester, Yvo Desmedt. All languages in NP have divertible zero-knowledge proofs and arguments under cryptographic assumptions. Eurocrypt '90 LNCS 473, Springer-Verlag 1991, 1–10.
David Chaum, Jan-Hendrik Evertse, Jeroen van de Graaf. An improved protocol for demonstrating possession of discrete logarithms and some generalizations. Eurocrypt '87. LNCS 304, Springer-Verlag 1988, 127–141.
Jan L. Camenisch, Jean-Marc Piveteau, Markus A. Stadler. Blind Signatures Based on the Discrete Logarithm Problem. Eurocrypt '94. LNCS 950, Springer-Verlag 1995, 428–432.
John M. DeLaurentis. A Further Weakness in the Common Modulus Protocol for the RSA Cryptoalgorithm. Cryptologia 8/3 (1984) 253–259.
Whitfield Diffie, Martin E. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory. 22/6 (1976) 644–654.
Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions on Information Theory. 31/4 (1985) 469–472.
Uriel Feige, Arnos Fiat, Adi Shamir. Zero-Knowledge Proofs of Identity. Journal of Cryptology 1/2 (1988) 77–94.
Amos Fiat, Adi Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature Problems. Crypto '86. LNCS 263, Springer-Verlag 1987, 186–194.
Shafi Goldwasser, Silvio Micali, Charles Rackoff. The Knowledge Complexity of Interactive Proof Systems. SIAM J. Computing. 18/1 (1989) 186–207.
Patrick Horster, Markus Michels, Holger Petersen. Meta-Message Recovery and Meta-Blind Signature Schemes Based on the Discrete Logarithm Problem and Their Applications. Asiacrypt '94. LNCS 917, Springer-Verlag 1995, 224–237.
Eric Hughes. An encrypted key transmission protocol. Crypto '94 Rump Session presentation, August 1994.
Toshija Itoh, Kouichi Sakurai, Hiroki Shizuya. Any Language in IP has a Divertible ZKIP. AsiaCrypt '91. Springer-Verlag 1993, 382–396.
Masahiro Mambo, Eiji Okamoto. Proxy cryptosystems: delegation of the power to decrypt ciphertexts. IEICE Trans. Fund. Electronics Communications and Comp Sci. E80-A/1 (1997) 54–63.
Masahiro Mambo, Keisuke Usuda, and Eiji Okamoto. Proxy signatures: delegation of the power to sign messages. IEICE Trans. Fund. of Electronic Communications and Comp Sci. E79-A/9 (1996) 1338–1354.
NIST. A proposed federal information processing standard for digital signature standard (DSS). Draft Tech. Rep. FIPS PUB XXX, August 1991. Standards Publication (FIPS
Tatsuaki Okamoto, Kazuo Ohta. Divertible zero-knowledge interactive proofs and commutative random self-reducibility. Eurocrypt '89 LNCS 434, Springer-Verlag 1990, 134–149.
Ronald L. Rivest, Adi Shamir, Leonhard Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. CACM 21/2 (1978) 120–126, reprinted: 26/1 (1983) 96–99.
Gustavus J. Simmons. A ”Weak” Privacy Protocol Using the RSA Crypto Algorithm. Cryptologia 7/2 (1983) 180–182.
Gustavus J. Simmons. The Prisoners' Problem and the Subliminal Channel. Crypto '83. Plenum Press, New York 1984, 51–67.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blaze, M., Bleumer, G., Strauss, M. (1998). Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (eds) Advances in Cryptology — EUROCRYPT'98. EUROCRYPT 1998. Lecture Notes in Computer Science, vol 1403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054122
Download citation
DOI: https://doi.org/10.1007/BFb0054122
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64518-4
Online ISBN: 978-3-540-69795-4
eBook Packages: Springer Book Archive