Applying grammatical inference in learning a language model for oral dialogue

  • Jacques Chodorowski
  • Laurent Miclet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1433)


We present an application of the ECGI algorithm to the learning of a language model for Speech Recognition. Results are given on a real dialogue corpus. Integrating this technique in a Speech Recognizer is discussed.

Key Words

Grammatical Inference Speech Recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BDPdS+92]
    Brown (P.), Della-Pietra (V.), de Souza (P.), Lai (J.) et Mercer (R.).-Class-based n-gram models of natural language. Computational Linguistics, Vol 18, 1992, pp. 467–479.Google Scholar
  2. [CGV94]
    Castellanos (A.), Galliano (I.) et Vidal (E.).-Application of ostia to machine translation tasks. ICGI'94, 1994, pp. 93–105.Google Scholar
  3. [Cha93]
    Charniak (E.).-Statistical Language Learning.-The MIT Press, 1993.Google Scholar
  4. [CM57]
    Chomsky (N.) et Miller (G. A.).-Pattern conception.-Rapport technique, AFCRC-TN-5757, 1957. (ASTIA Document AD 110076).Google Scholar
  5. [Dup96]
    Dupont (P.).-Utilisation et apprentissage de modèles de langages pour la reconnaissance de la parole continue.-Thèse de PhD, ENST, 1996.Google Scholar
  6. [DvdBW97]
    Daelemans (W.), van den Bosch (A.) et Weijters (T.).-Empirical learning of natural language processing tasks. In: Proceedings of 9th European Conference on Machine Learning, Workshop on Empirical Learning of Natural Language Processing Tasks.-1997.Google Scholar
  7. [DYB96]
    Deligne (S.), Yvon (F.) et Bimbot (F.).-Introducing statistical dependencies and structural constraints in variable-length sequence models. Grammatical inference and Applications, ICGI'96, 1996, pp. 156–167.Google Scholar
  8. [Gre94]
    Gregor (J.).-Data-driven inductive inference of finite-state automata. Intenationnal Journal of Pattern Recognition and Artificial Intelligence, vol. 8, nℴ 1, 1994, pp. 305–322.CrossRefGoogle Scholar
  9. [ICG94]
    Grammatical Inference and Applications.-September 1994. Springer-Verlag.Google Scholar
  10. [ICG96]
    Grammatical Inference: Learning Syntax from Sentences.-1996. Springer-Verlag.Google Scholar
  11. [JLM92]
    Jelinek (F.), Lafferty (J.) et Mercer (R. L.).-Basic methods of probabilistic context-free grammars. In: Speech Recognition and Understanding: Recent advances, Trends and Applications. pp. 345–360.-Nato ASI Series, 1992. Springer Verlag.Google Scholar
  12. [KS83]
    Kruskal (J. B.) et Sankoff (D.).-Time Warps, String Edits, and Macromolecules: the Theory and Practice of Sequence Comparaison.-Addison-Wesley, 1983.Google Scholar
  13. [Lev66]
    Levenshtein (V. I.).-Binary codes capable of correcting deletions, insertions and reversals. Cybernetics and Control Theory, vol. 10, 1966, pp. 707–710.MathSciNetGoogle Scholar
  14. [LP97]
    Lang (K.) et Pearlmutter (B.).-Abbadingo one competition, 1997. Scholar
  15. [LVA+94]
    Lucas (S.), Vidal (E.), Amiri (A.), Hanlon (S.) et Amengual (J. C).-A comparison of syntaxic and statistical techniques for off-line ocr. ICGI'94, vol. Lecture Notes in Artificial Intelligence 862, 1994, pp. 168–180.Google Scholar
  16. [Mic97]
    Miclet (L.).-Machine learning (including grammatical inference) and natural language processing: a short introduction to the bibliography. Workshop on Automata Induction, Grammatical Inference and Language acquisition, 1997.Google Scholar
  17. [Pow96]
    Powers (D.).-Unsupervised learning of linguistic structure. An empirical evaluation.-Rapport technique, Department of Computer Science, Faculty of Science and Engineering, The Flinders University of South Australia, 1996.Google Scholar
  18. [RJ92]
    Rabiner (L.) et Juang (B. H.).-Fundamentals of speech recognition.-Prentice-Hall, 1992.Google Scholar
  19. [RPV89]
    Rulot (H.), Prieto (N.) et Vidal (E.).-Learning accurate finite-state structural models of words: the ecgi algorithm. In: ICASSP'89, pp. 643–646.-1989.Google Scholar
  20. [RS97]
    Roche (E.) et Schubes (Y.).-Finite-State Language Processing.-MIT Press, 1997.Google Scholar
  21. [RV88]
    Rulot (H.) et Vidal (E.).-An efficient algorithm for the inference of circuit-free automata. Syntactic and Structural Pattern Recognition, 1988, pp. 173–184.Google Scholar
  22. [Sad94]
    Sadek (D.).-Communication theory = rationality principles + communicative act models. In: AAAI Workshop on Planning for Interagent Communication, pp. 100–106.-1994.Google Scholar
  23. [SFC+96]
    Sadek (D.), Ferrieux (A.), Cozannet (A.), Bretier (P.), Panaget (F.) et Simonin (J.).-Effective human-computer cooperative spoken dialogue: the ags demonstrator. In: Proceedings of ICSLP, pp. 542–545.-1996.Google Scholar
  24. [SO94]
    Stolke (A.) et Omohundro (S.).-Inducting probabilistic grammars by bayesian model merging. In: International Colloquium on Gramatical Inference, éd. par in Artificial Intelligence (Lecture Notes). ICGI'94, pp. 106–118.-1994.Google Scholar
  25. [Vid94]
    Vidal (E.).-Language learning, understanding and translation. Progress ond Prospects of Speech Research and Technology. Proceedings of the CRIM/FORWISS Workshop, September 1994.Google Scholar
  26. [WRS96]
    Wermter (S.), Riloff (E.) et Scheler (G.).-Connectionnist, Statistical and Symbolic approaches to Learning for Natural Language Processing.-Springer-Verlag, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jacques Chodorowski
    • 1
  • Laurent Miclet
    • 1

Personalised recommendations