Advertisement

Metrics and benchmarking for parallel job scheduling

  • Dror G. Feitelson
  • Larry Rudolph
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1459)

Abstract

The evaluation of parallel job schedulers hinges on two things: the use of appropriate metrics, and the use of appropriate workloads on which the scheduler can operate. We argue that the focus should be on on-line open systems, and propose that a standard workload should be used as a benchmark for schedulers. This benchmark will specify distributions of parallelism and runtime, as found by analyzing accounting traces, and also internal structures that create different speedup and synchronization characteristics. As for metrics, we present some problems with slowdown and bounded slowdown that have been proposed recently.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Calzarossa, G. Haring, G. Kotsis, A. Merlo, and D. Tessera, “A hierarchical approach to workload characterization for parallel systems” In High-Performance Computing and Networking, pp. 102–109, Springer-Verlag, May 1995. Lect. Notes Comput. Sci. vol. 919.Google Scholar
  2. [2]
    M. Calzarossa and G. Serazzi, “A characterization of the variation in time of workload arrival patternsIEEE Trans. Comput. C-34(2), pp. 156–162, Feb 1985.Google Scholar
  3. [3]
    M. Calzarossa and G. Serazzi, “Workload characterization: a surveyProc. IEEE 81(8), pp. 1136–1150, Aug 1993.CrossRefGoogle Scholar
  4. [4]
    S-H. Chiang and M. K. Vernon, “Dynamic vs. static quantum-based parallel processor allocation” In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 200–223, Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.Google Scholar
  5. [5]
    A. B. Downey, “A parallel workload model and its implications for processor allocation” In 6th Intl. Symp. High Performance Distributed Comput, Aug 1997.Google Scholar
  6. [6]
    A. B. Downey, “Predicting queue times on space-sharing parallel computers” In 11th Intl. Parallel Processing Symp., pp. 209–218, Apr 1997.Google Scholar
  7. [7]
    M. Drozdowski, “Scheduling multiprocessor tasks — an overviewEuropean J. Operational Research 94, pp. 215–230, 1996.MATHCrossRefGoogle Scholar
  8. [8]
    D. G. Feitelson, “Packing schemes for gang scheduling” In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 89–110, Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.Google Scholar
  9. [9]
    D. G. Feitelson and M. A. Jette, “Improved utilization and responsiveness with gang scheduling” In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 238–261, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.Google Scholar
  10. [10]
    D. G. Feitelson and B. Nitzberg, “Job characteristics of a production parallel scientific workload on the NASA Ames iPSC/860” In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 337–360, Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.Google Scholar
  11. [11]
    D. G. Feitelson and L. Rudolph, “Toward convergence in job schedulers for parallel supercomputers” In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 1–26, Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.Google Scholar
  12. [12]
    D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong, “Theory and practice in parallel job scheduling” In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 1–34, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.Google Scholar
  13. [13]
    M. Harchol-Balter and A. B. Downey, “Exploiting process lifetime distributions for dynamic load balancing” In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 13–24, May 1996.Google Scholar
  14. [14]
    R. W. Hockney, “Performance of parallel computers” In High-Speed Computation, J. S. Kowalik (ed.), pp. 159–175, Springer-Verlag, 1984. NATO ASI Series Vol. F7.Google Scholar
  15. [15]
    J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan, “Modeling of workload in MPPs” In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 95–116, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.Google Scholar
  16. [16]
    L. Kleinrock, “Power and deterministic rules of thumb for probabilistic problems in computer communications” In Intl. Conf. Communications, vol. 3, pp. 43.1.1–43.1.10, Jun 1979.Google Scholar
  17. [17]
    W. Lee, M. Frank, V. Lee, K. Mackenzie, and L. Rudolph, “Implications of I/O for gang scheduled workloads” In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 215–237, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.Google Scholar
  18. [18]
    V. Lo, J. Mache, and K. Windisch, “A comparative study of real workload traces and synthetic workload models for parallel job scheduling” In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 25–47, Springer Verlag, 1998. Lect. Notes Comput. Sci. vol. 1459.Google Scholar
  19. [19]
    T. D. Nguyen, R. Vaswani, and J. Zahorjan, “Parallel application characterization for multiprocessor scheduling policy design” In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 175–199, Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.Google Scholar
  20. [20]
    E. W. Parsons and K. C. Sevcik, “Multiprocessor scheduling for high-variability service time distributions” In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 127–145, Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.Google Scholar
  21. [21]
    K. C. Sevcik, “Application scheduling and processor allocation in multiprogrammed parallel processing systemsPerformance Evaluation 19(2–3), pp. 107–140, Mar 1994.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Dror G. Feitelson
    • 1
  • Larry Rudolph
    • 2
  1. 1.Institute of Computer ScienceThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Laboratory for Computer ScienceMITCambridge

Personalised recommendations