A comment on the efficiency of secret sharing scheme over any finite abelian group

  • Yvo Desmedt
  • Brian King
  • Wataru Kishimoto
  • Kaoru Kurosawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1438)


In this paper, we show an efficient (k,n) threshold secret sharing scheme over any finite Abelian group such that the size of share is q/2 (where q is a prime satisfying nq < 2n), which is a half of that of Desmedt and Frankel's scheme. Consequently, we can obtain a threshold RSA signature scheme in which the size of shares of each signer is only a half.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.R. Blakley. “Safeguarding cryptographic keys”. In Proc. of the AFIPS 1979 National Computer Conference, vol.48, pages 313–317, 1979.Google Scholar
  2. 2.
    A. Shamir. “How to Share a Secret”. In Communications of the ACM, vol.22, no.11, pages 612–613, 1979.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Y. Desmedt and Y Prankel. “Threshold Cryptosystem”. In Proc. of Crypto'89, Lecture Notes in Computer Science, LNCS 435, Springer Verlag, pages 307–315, 1990.Google Scholar
  4. 4.
    Y. Desmedt and Y. Frankel. “Homomorphi zero-knowledge threshold schemes over any finite Abelian group”. In SIAM J. on Discrete Math., vol.7, no.4, pages 667–679, 1994.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    A. De Santis, Y. Desmedt, Y. Prankel, and M. Yung. “How to share a funciton securely”. In Proc. of STOC'94, pages 522–533, 1994.Google Scholar
  6. 6.
    Y. Desmedt, G. Di Crescenzo, and M. Burmester. “Multiplicative non-abelian sharing schemes and their application to threshold cryptography”. In Proc. of Asiacrypt'94, Lecture Notes in Computer Science, LNCS 917, Springer Verlag, pages 21–32, 1995.Google Scholar
  7. 7.
    S. Blackburn, M. Burmester, Y. Desmedt, and P. Wild. “Efficient multiplicative sharing scheme”. In Proc. of Eurocrypt'96, Lecture Notes in Computer Science, LNCS 1070, Springer Verlag, pages 107–118, 1996.Google Scholar
  8. 8.
    A. Luetbecher, and G. Niklasch. “On cliques of exceptional units and Lenstra's construction of Euclidean Fields”. In Number Theory, Ulm 1987 Lecture Notes in Mathematics 1380, Springer-Verlag pages 150–178, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Yvo Desmedt
    • 1
    • 2
  • Brian King
    • 3
  • Wataru Kishimoto
    • 4
  • Kaoru Kurosawa
    • 5
  1. 1.EE & CS, and the Center of Cryptography, Computer and Network SecurityUniversity of WisconsinMilwaukeeUSA
  2. 2.Dept. of Mathematics, Royal HollowayUniversity of LondonUK
  3. 3.Dept. of Elec. Eng. & Comp. ScienceUniversity of WisconsinMilwaukeeUSA
  4. 4.Dept. of Information & Communication Eng., Faculty of Eng.Tamagawa UniversityTokyoJapan
  5. 5.Dept. of Electrical and Electronic Eng., Faculty of Eng.Tokyo Institute of TechnologyTokyoJapan

Personalised recommendations