Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

Workshop on the Theory and Application of of Cryptographic Techniques

EUROCRYPT 1994: Advances in Cryptology — EUROCRYPT'94 pp 275–286Cite as

  1. Home
  2. Advances in Cryptology — EUROCRYPT'94
  3. Conference paper
A secure and efficient conference key distribution system

A secure and efficient conference key distribution system

Extended abstract

  • Mike Burmester1 &
  • Yvo Desmedt2 
  • Conference paper
  • First Online: 01 January 2006
  • 3088 Accesses

  • 335 Citations

  • 3 Altmetric

Part of the Lecture Notes in Computer Science book series (LNCS,volume 950)

Abstract

We present practical conference key distribution systems based on public keys, which authenticate the users and which are ‘proven’ secure provided the Diffie-Hellman problem is intractable. A certain number of interactions is needed but the overall cost is low. There is a complexity tradeoff. Depending on the network used, we either have a constant (in the number of conference participants) number of rounds (exchanges) or a constant communication and computation overhead. Our technique for authentication can be extended and used as the basis for an authentication scheme which is ‘proven’ secure against any type of attack, provided the Discrete Logarithm problem is intractable.

Research partly carried out while visiting the University of Wisconsin — Milwaukee.

Research partly carried out while visiting Royal Holloway, University of London. Supported in part by NSF Grant NCR-9106327 and NSF Grant INT-9123464.

Download conference paper PDF

References

  1. M. Bellare, S. Goldwasser: New paradigms for digital signatures and message authentication based on non-interactive zero-knowledge proofs. In: G. Brassard, (ed.): Advances in Cryptology — Crypto '89. Lecture Notes in Computer Science 435. Berlin: Springer 1990, pp. 194–211

    Google Scholar 

  2. M. Bellare, S. Micali: How to sign given any trapdoor function. Journal of the ACM 39, 214–233 (1992)

    CrossRef  MathSciNet  Google Scholar 

  3. M. Bellare, S. Micali, R. Ostrovsky: Perfect zero-knowledge in constant rounds. In: Proceedings of the Twenty Second Annual ACM Symp. Theory of Computing. ACM Press 1990, pp. 482–493

    Google Scholar 

  4. S. Bengio, G. Brassard, Y.G. Desmedt, C. Goutier, J.-J. Quisquater: Secure implementations of identification systems. Journal of Cryptology 4, pp. 175–183 (1991)

    CrossRef  Google Scholar 

  5. C. H. Bennett, G. Brassard: Quantum cryptography, and its application to provable secure key expansion, public-key distribution, and coin tossing. In: International Symposium on Information Theory (abstracts), IEEE Computer Society Press 1983, p. 91

    Google Scholar 

  6. R. Blom: Key distribution and key management. In: Proc. Eurocrypt 83, Udine, Italy, March 1983.

    Google Scholar 

  7. M. Blum, S. Micali: How to generate cryptographically strong sequences of pseudorandom bits. Siam J. Comput. 13, 850–864 (1984)

    CrossRef  MathSciNet  Google Scholar 

  8. C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, M. Yung: Perfectly-secure key distribution for dynamic conferences. In: E. Brickell (ed.): Advances in Cryptology — Crypto 92. Lecture Notes in Computer Science 740. Berlin: Springer 1993, pp. 471–487

    Google Scholar 

  9. J. Boyar, M.W. Krentel, S.A. Kurtz: A discrete logarithm implementation of zeroknowledge blobs. Technical Report 87-002, University of Chicago, March 1987.

    Google Scholar 

  10. G. Brassard, D. Chaum, C. Crépeau: Minimum disclosure proofs of knowledge. Journal of Computer and System Sciences 37, 156–189 (1988)

    CrossRef  MathSciNet  Google Scholar 

  11. M. Burmester: On the risk of opening distributed keys. To appear in the Proceedings of Crypto '94. Berlin: Springer 1994.

    Google Scholar 

  12. J.L. Carter, M.N. Wegman: Universal classes of hash functions. Journal of Computer and System Sciences 18, 143–154 (1979)

    CrossRef  MathSciNet  Google Scholar 

  13. D. Chaum, J.-H. Evertse, J. van de Graaf: An improved protocol for demonstrating possession of discrete logarithms and some generalizations. In: D. Chaum, W.L. Price (eds.): Advances in Cryptology — Eurocrypt '87. Lecture Notes in Computer Science 304. Berlin: Springer 1988, pp. 127–141

    Google Scholar 

  14. D. Chaum, J.-H. Evertse, J. van de Graaf, R. Peralta: Demonstrating possession of a discrete logarithm without revealing it. In: A. Odlyzko (ed.): Advances in Cryptology — Crypto '86. Lecture Notes in Computer Science 263. Berlin: Springer 1987, pp. 200–212

    Google Scholar 

  15. D. Coppersmith, A. Odlyzko, R. Schroeppel: Discrete logarithms in GF(p). Algorithmica, pp. 1–15 (1986)

    Google Scholar 

  16. Y. Desmedt, M. Burmester: An efficient zero-knowledge scheme for the discrete logarithm based on smooth numbers. In: H. Imai, R.L. Rivest, T. Matsumoto (eds.): Advances in Cryptology — Asiacrypt '91. Lecture Notes in Computer Science 739. Berlin: Springer 1992, pp. 360–367

    Google Scholar 

  17. W. Diffie, M. E. Hellman: New directions in cryptography. IEEE Trans. Inform. Theory IT-22, 644–654 (1976)

    CrossRef  MathSciNet  Google Scholar 

  18. W. Diffie, P.C. van Oorschot, M.J. Wiener: Authentication and authenticated key exchanges. Designs, Codes and Cryptography 2, 107–125 (1992)

    CrossRef  Google Scholar 

  19. M. J. Fischer, R. N. Wright: Multiparty secret key exchange using a random deal of cards. In: J. Feigenbaum (ed.): Advances in Cryptology — Crypto '91, Lecture Notes in Computer Science 576. Berlin: Springer 1992, pp. 141–155

    Google Scholar 

  20. Z. Galil, S. Haber, M. Yung: A private interactive test of a Boolean predicate and minimum-knowledge public key cryptosystems. In: Annual Symp. on Foundations of Computer Science. IEEE Computer Society Press 1985, pp. 360–371

    Google Scholar 

  21. S. Goldwasser, S. Micali, C. Rackoff: The knowledge complexity of interactive proof systems. Siam J. Comput. 18, 186–208 (1989)

    CrossRef  MathSciNet  Google Scholar 

  22. S. Goldwasser, S. Micali, R. Rivest: A digital signature scheme secure against adaptive chosen-message attacks. Siam J. Comput. 17, 281–308 (1988)

    CrossRef  MathSciNet  Google Scholar 

  23. D. Gordon: Discrete logarithm in GF(p) using the number field sieve. Submitted.

    Google Scholar 

  24. I. Ingemarsson, D.T. Tang, C.K. Wong: A conference key distribution system. IEEE Trans. Inform. Theory 28, 714–720 (1982)

    CrossRef  MathSciNet  Google Scholar 

  25. K. Koyama, K. Ohta: Identity-based conference key distribution systems. In: C. Pomerance (ed.): Advances in Cryptology — Crypto '87. Lecture Notes in Computer Science 293. Berlin: Springer 1988, pp. 175–185

    Google Scholar 

  26. K.S. McCurley: A key distribution system equivalent to factoring. J. Cryptology 1, 95–105 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  27. A. Menezes, S. Vanstone, T. Okamoto: Reducing elliptic curve logarithms to logarithms in a finite field. In: Proceedings of the Twenty Third Annual ACM Symp. Theory of Computing. ACM Press 1991, pp. 80–89

    Google Scholar 

  28. M. Naor, M. Yung: Universal one-way hash functions and their cryptographic applications. In: Proceedings of the Twenty First Annual ACM Symp. Theory of Computing. ACM Press 1989, pp. 33–43

    Google Scholar 

  29. A.M. Odlyzko: Discrete logs in a finite field and their cryptographic significance. In: N. Cot, T. Beth, I. Ingemarsson, (eds.): Advances in Cryptology — Eurocrypt 84. Lecture Notes in Computer Science 209. Berlin: Springer 1984, pp. 224–314

    Google Scholar 

  30. E. Okamoto: Key distribution systems based on identification information. In: C. Pomerance (ed.): Advances in Cryptology — Crypto '87. Lecture Notes in Computer Science 293. Berlin: Springer 1988, pp. 194–202

    Google Scholar 

  31. E. Okamoto, K. Tanaka: Key distribution system based on identification information. IEEE J. Selected Areas in Commun. 7, 481–485 (1989)

    CrossRef  Google Scholar 

  32. R.L. Rivest, A. Shamir, L. Adleman: A method for obtaining digital signatures and public key cryptosystems. Commun. ACM 21, 120–126 (1978)

    CrossRef  MathSciNet  Google Scholar 

  33. J. Rompel: One-way functions are necessary and sufficient for secure signatures. In: Proceedings of the Twenty Second Annual ACM Symp. Theory of Computing. ACM Press 1990, pp. 387–394

    Google Scholar 

  34. A. W. Schrift, A. Shamir: The discrete log is very discreet. In: Proceedings of the Twenty Second Annual ACM Symp. Theory of Computing. ACM Press 1990, pp. 405–415

    Google Scholar 

  35. A. Shamir: Efficient signature schemes based on birational permutations. To appear in the Proceedings of Crypto '93. Berlin: Springer.

    Google Scholar 

  36. S. Tsujii, T. Itoh: An ID-based cryptosystem based on the discrete logarithm. IEEE J. Selected Areas in Commun. 7, 467–473 (1989)

    CrossRef  Google Scholar 

  37. M.N. Wegman, J.L. Carter: New hash functions and their use in authentication and set equality. J. Computer and System Sciences 22, 265–279 (1981)

    CrossRef  MathSciNet  Google Scholar 

  38. Y. Yacobi, Z. Shmuely: On key distribution systems. In: G. Brassard (ed.): Advances in Cryptology — Crypto '89. Lecture Notes in Computer Science 435. Berlin: Springer 1990, pp. 344–355

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, RH - University of London, TW20 OEX, Egham, Surrey, UK

    Mike Burmester

  2. Department of EE & CS, University of Wisconsin - Milwaukee, P.O. Box 784, 53201, Milwaukee, WI, USA

    Yvo Desmedt

Authors
  1. Mike Burmester
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yvo Desmedt
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

    Rights and permissions

    Reprints and Permissions

    Copyright information

    © 1995 Springer-Verlag Berlin Heidelberg

    About this paper

    Cite this paper

    Burmester, M., Desmedt, Y. (1995). A secure and efficient conference key distribution system. In: De Santis, A. (eds) Advances in Cryptology — EUROCRYPT'94. EUROCRYPT 1994. Lecture Notes in Computer Science, vol 950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0053443

    Download citation

    • .RIS
    • .ENW
    • .BIB
    • DOI: https://doi.org/10.1007/BFb0053443

    • Published: 23 May 2006

    • Publisher Name: Springer, Berlin, Heidelberg

    • Print ISBN: 978-3-540-60176-0

    • Online ISBN: 978-3-540-44717-7

    • eBook Packages: Springer Book Archive

    Share this paper

    Anyone you share the following link with will be able to read this content:

    Sorry, a shareable link is not currently available for this article.

    Provided by the Springer Nature SharedIt content-sharing initiative

    Search

    Navigation

    • Find a journal
    • Publish with us

    Discover content

    • Journals A-Z
    • Books A-Z

    Publish with us

    • Publish your research
    • Open access publishing

    Products and services

    • Our products
    • Librarians
    • Societies
    • Partners and advertisers

    Our imprints

    • Springer
    • Nature Portfolio
    • BMC
    • Palgrave Macmillan
    • Apress
    • Your US state privacy rights
    • Accessibility statement
    • Terms and conditions
    • Privacy policy
    • Help and support

    167.114.118.212

    Not affiliated

    Springer Nature

    © 2023 Springer Nature