Advertisement

A general lower bound for the linear complexity of the product of shift-register sequences

  • Rainer Göttfert
  • Harald Niederreiter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 950)

Abstract

The determination of the linear complexity of the product of two shift-register sequences is a basic problem in the theory of stream ciphers. We present for the first time a lower bound for the linear complexity of the product of two shift-register sequences in the general case. Moreover, we provide information on the minimal polynomial of such a product.

References

  1. [1]
    Golić, J. Dj.: On the linear complexity of functions of periodic GF(q) sequences, IEEE Trans. Inform. Theory 35, 69–75 (1989).CrossRefMathSciNetGoogle Scholar
  2. [2]
    Göttfert, R.: Produkte von Schieberegisterfolgen, Ph.D. Dissertation, Univ. of Vienna, 1993.Google Scholar
  3. [3]
    Göttfert, R., and Niederreiter, H.: On the linear complexity of products of shift-register sequences, Advances in Cryptology — EUROCRYPT '93 (T. Helleseth, ed.), Lecture Notes in Computer Science, vol. 765, pp. 151–158, Springer-Verlag, Berlin, 1994.Google Scholar
  4. [4]
    Herlestam, T.: On functions of linear shift register sequences, Advances in Cryptology — EUROCRYPT '85 (F. Pichler, ed.), Lecture Notes in Computer Science, vol. 219, pp. 119–129, Springer-Verlag, Berlin, 1986.Google Scholar
  5. [5]
    Lidl, R., and Niederreiter, H.: Introduction to Finite Fields and Their Applications, Cambridge University Press, Cambridge, 1986.Google Scholar
  6. [6]
    Niederreiter, H.: Sequences with almost perfect linear complexity profile, Advances in Cryptology — EUROCRYPT '87 (D. Chaum and W. L. Price, eds.), Lecture Notes in Computer Science, vol. 304, pp. 37–51, Springer-Verlag, Berlin, 1988.Google Scholar
  7. [7]
    Rueppel, R. A.: Stream ciphers, Contemporary Cryptology: The Science of Information Integrity (G. J. Simmons, ed.), pp. 65–134, IEEE Press, New York, 1992.Google Scholar
  8. [8]
    Rueppel, R. A., and Staffelbach, O. J.: Products of linear recurring sequences with maximum complexity, IEEE Trans. Inform. Theory 33, 124–131 (1987).CrossRefGoogle Scholar
  9. [9]
    Zierler, N., and Mills, W. H.: Products of linear recurring sequences, J. Algebra 27, 147–157 (1973).CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Rainer Göttfert
    • 1
  • Harald Niederreiter
    • 1
  1. 1.Institute for Information ProcessingAustrian Academy of SciencesViennaAustria

Personalised recommendations