Black box cryptanalysis of hash networks based on multipermutations

  • C. P. Schnorr
  • S. Vaudenay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 950)


Black box cryptanalysis applies to hash algorithms consisting of many small boxes, connected by a known graph structure, so that the boxes can be evaluated forward and backwards by given oracles. We study attacks that work for any choice of the black boxes, i.e. we scrutinize the given graph structure. For example we analyze the graph of the fast Fourier transform (FFT). We present optimal black box inversions of FFT-compression functions and black box constructions of collisions. This determines the minimal depth of FFT-compression networks for collision-resistant hashing. We propose the concept of multipermutation, which is a pair of orthogonal latin squares, as a new cryptographic primitive that generalizes the boxes of the FFT. Our examples of multipermutations are based on the operations circular rotation, bitwise xor, addition and multiplication.


  1. Baritaud, T., Gilbert, H., and Girault, M.: F.F.T. Hashing is not Collision-free. Proceedings of EUROCRYPT'92, Springer LNCS 658 (1993), pp. 35–44.MathSciNetGoogle Scholar
  2. Hall, M. and Paige, L.J.: Complete mappings of finite groups. Pac. J. Math., 5 (1955), pp. 541–549.MathSciNetGoogle Scholar
  3. Johnson, D.M., Dulmage, A.L., and Mendelsohn, N.S.: Orthomorphisms of groups and orthogonal latin squares. I. Can. J. Math. 13, (1961), pp. 356–372.MathSciNetGoogle Scholar
  4. Lai, X. and Massey, J.L.: A proposal of a new block encryption standard. Advances in Cryptology. Proceedings of EUROCRYPT'90. Springer LNCS 473, (1991), pp. 389–404.MathSciNetGoogle Scholar
  5. Schnorr, C.P.: FFT-Hash II, efficient cryptographic hashing. Proceedings of EUROCRYPT'92. Springer LNCS 658 (1992), pp. 45–54.MathSciNetGoogle Scholar
  6. Schnorr, C.P. and Vaudenay, S.: Parallel FFT-Hashing. Proceedings of Cambridge Security Workshop, Cambridge, December 9–11, 1993. to appear in Springer LNCS, Ed.: R. Anderson.Google Scholar
  7. Vaudenay, S.: FFT-Hash II is not yet Collision-Free. Proceedings of CRYPTO'93, Springer LNCS 740 (1993), pp. 587–593.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • C. P. Schnorr
    • 1
  • S. Vaudenay
    • 2
  1. 1.Fachbereich Mathematik/InformatikUniversität FrankfurtFrankfurt a.M.
  2. 2.Dép. Math. Inf.ENS ParisParis

Personalised recommendations