On the foundations of modern cryptography

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1294)


In our opinion, the Foundations of Cryptography are the paradigms, approaches and techniques used to conceptualize, define and provide solutions to natural cryptographic problems. In this essay, we survey some of these paradigms, approaches and techniques as well as some of the fundamental results obtained using them. Special effort is made in attempt to dissolve common misconceptions regarding these paradigms and results.


Encryption Scheme Signature Scheme Pseudorandom Generator Pseudorandom Function Trapdoor Permutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions: Certain Parts are As Hard As the Whole. SIAMJ. on Comput., Vol. 17, April 1988, pages 194–209.CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    D. Beaver. Foundations of Secure Interactive Computing. In Crypto91, Springer-Verlag LNCS (Vol. 576), pages 377–391.Google Scholar
  3. 3.
    M. Bellare, R. Canetti and H. Krawczyk. Pseudorandom functions Revisited: The Cascade Construction and its Concrete Security. In 37th FOCS, pages 514–523, 1996.Google Scholar
  4. 4.
    M. Bellare, R. Canetti and H. Krawczyk. Keying Hash Functions for Message Authentication. In Crypto96, Springer LNCS (Vol. 1109), pages 1–15.Google Scholar
  5. 5.
    M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In Crypto92, Springer-Verlag LNCS (Vol. 740), pages 390–420.Google Scholar
  6. 6.
    M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography: the Case of Hashing and Signing. In Crypto94, Springer-Verlag LNCS (Vol. 839), pages 216–233, 1994.Google Scholar
  7. 7.
    M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography and Application to Virus Protection. In 27th STOC, pages 45–56, 1995.Google Scholar
  8. 8.
    M. Bellare, S. Goldwasser and D. Micciancio. “Pseudo-random” Number Generation within Cryptographic Algorithms: the DSS Case. These proceedings.Google Scholar
  9. 9.
    M. Bellare, R. Guerin and P. Rogaway. XORMACs: New Methods for Message Authentication using Finite Pseudorandom Functions. In Crypto95, Springer-Verlag LNCS (Vol. 963), pages 15–28.Google Scholar
  10. 10.
    M. Bellare, J. Kilian and P. Rogaway. The Security of Cipher Block Chaining. In Crypto94, Springer-Verlag LNCS (Vol. 839), pages 341–358.Google Scholar
  11. 11.
    M. Bellare and S. Micali. How to Sign Given Any Trapdoor Function. J. of the ACM, Vol. 39, pages 214–233, 1992.CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm for Designing Efficient Protocols. In 1st Conf. on Computer and Communications Security, ACM, pages 62–73,1993.Google Scholar
  13. 13.
    M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Crypto93, Springer-Verlag LNCS (Vol. 773), pages 232–249, 1994.MathSciNetGoogle Scholar
  14. 14.
    M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: The Three Party Case. In 27th STOC, pages 57–66,1995.Google Scholar
  15. 15.
    M. Bellare and P. Rogaway. The Exact Security of Digital Signatures: How to Sign with RSA and Rabin. In EuroCrypt96, Springer LNCS (Vol. 1070).Google Scholar
  16. 16.
    M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Interactive Proofs: How to Remove Intractability. In 20th STOC, pages 113–131,1988.Google Scholar
  17. 17.
    M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages 1–10, 1988.Google Scholar
  18. 18.
    L. Blum, M. Blum and M. Shub. A Simple Secure Unpredictable Pseudo-Random Number Generator. SIAMJ. on Comput., Vol. 15, 1986, pages 364–383.CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge Proof Systems. SIAM J. on Comput., Vol. 20, No. 6, pages 1084–1118, 1991. (Considered the journal version of [20].)CrossRefzbMATHGoogle Scholar
  20. 20.
    M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and its Applications. In 20th STOC, pages 103–112, 1988. See [19].Google Scholar
  21. 21.
    M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryption Scheme which hides all partial information. In Crypto84, LNCS (Vol. 196) Springer-Verlag, pages 289–302.Google Scholar
  22. 22.
    M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SIAMJ. on Comput., Vol. 13, pages 850–864, 1984.CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    D. Boneh, R. DeMillo and R. Lipton. On the Importance of Checking Cryptographic Protocols for Faults. In EuroCrypt97, Springer LNCS (Vol. 1233), pages 37–51, 1997.MathSciNetGoogle Scholar
  24. 24.
    J.B. Boyar. Inferring Sequences Produced by Pseudo-Random Number Generators. J. of the ACM, Vol. 36, pages 129–141, 1989.CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge. J. of Comp. and Sys. Sci., Vol. 37, No. 2, pages 156–189, 1988.CrossRefzbMATHGoogle Scholar
  26. 26.
    G. Brassard and C. Crépeau. Zero-Knowledge Simulation of Boolean Circuits. In Crypto86, Springer-Verlag LNCS (Vol. 263), pages 223–233, 1987.Google Scholar
  27. 27.
    R. Canetti. Studies in Secure Multi-Party Computation and Applications. Ph.D. Thesis, Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, June 1995. Available from from Scholar
  28. 28.
    R. Canetti. Towards Realizing Random Oracles: Hash Functions that Hide All Partial Information. These proceedings.Google Scholar
  29. 29.
    R. Canetti, C. Dwork, M. Naor and R. Ostrovsky. Deniable Encryption. These proceedings.Google Scholar
  30. 30.
    R. Canetti and R. Gennaro. Incoercible Multiparty Computation. In 37th FOCS, pages 504–513, 1996.Google Scholar
  31. 31.
    R. Canetti, S. Halevi and A. Herzberg. How to Maintain Authenticated Communication in the Presence of Break-Ins. In 16th Symp. on Principles of Distributed Computing, 1997.Google Scholar
  32. 32.
    R. Canetti and A. Herzberg. Maintaining Security in the Presence of Transient Faults. In Crypto94, Springer-Verlag LNCS (Vol. 839), pages 425–439.Google Scholar
  33. 33.
    L. Carter and M. Wegman. Universal Hash Functions. J. of Comp. and Sys. Sci, Vol. 18, 1979, pages 143–154.CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    D. Chaum. Blind Signatures for Untraceable Payments. In Crypto82, Plenum Press, pages 199–203, 1983.Google Scholar
  35. 35.
    D. Chaum, C. Crépeau and I. Damgård. Multi-party unconditionally Secure Protocols. In 20th STOC, pages 11–19, 1988.Google Scholar
  36. 36.
    D. Chaum, A. Fiat and M. Naor. Untraceable Electronic Cash. In Crypto88, Springer-Verlag LNCS (Vol. 403), pages 319–327.Google Scholar
  37. 37.
    B. Chor and N. Gilboa. Computationally Private Information Retrieval. In 29th STOC, pages 304–313, 1997.Google Scholar
  38. 38.
    B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan, Private Information Retrieval. In 36th FOCS, pages 41–50, 1995.Google Scholar
  39. 39.
    B. Chor, S. Goldwasser, S. Micali and B. Awerbuch. Verifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults. In 26th FOCS, pages 383–395,1985.Google Scholar
  40. 40.
    R. Cleve. Limits on the Security of Coin Flips when Half the Processors are Faulty. In 18th STOC, pages 364–369,1986.Google Scholar
  41. 41.
    I. Damgård. Collision Free Hash Functions and Public Key Signature Schemes. In Euro-Crypt87, Springer-Verlag, LNCS (Vol. 304), pages 203–216.Google Scholar
  42. 42.
    I. Damgård. A Design Principle for Hash Functions. In Crypto89, Springer-Verlag LNCS (Vol. 435), pages 416–427.Google Scholar
  43. 43.
    I. Damgård, O. Goldreich, T. Okamoto and A. Wigderson. Honest Verifier vs Dishonest Verifier in Public Coin Zero-Knowledge Proofs. In Crypto95, Springer-Verlag LNCS (Vol. 963), pages 325–338, 1995.Google Scholar
  44. 44.
    A. De-Santis, Y. Desmedt, Y. Frankel and M. Yung. How to Share a Function Securely. In 26th STOC, pages 522–533, 1994.Google Scholar
  45. 45.
    Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In Crypto89, Springer-Verlag LNCS (Vol. 435), pages 307–315.Google Scholar
  46. 46.
    W. Diffie, and M.E. Hellman. New Directions in Cryptography. IEEE Trans. on Info. Theory, IT-22 (Nov. 1976), pages 644–54.CrossRefMathSciNetGoogle Scholar
  47. 47.
    D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In 23rd STOC, pages 542–552, 1991.Google Scholar
  48. 48.
    C. Dwork, and M. Naor. Pricing via Processing or Combatting Junk Mail. In Crypto92, Springer-Verlag LNCS (Vol. 740), pages 139–147.Google Scholar
  49. 49.
    C. Dwork, and M. Naor. An Efficient Existentially Unforgeable Signature Scheme and its Application. To appear in J. of Crypto.. Preliminary version in Crypto94.Google Scholar
  50. 50.
    S. Even, O. Goldreich and S. Micali. On-line/Off-line Digital signatures. J. of Crypto., Vol. 9, 1996, pages 35–67.CrossRefMathSciNetzbMATHGoogle Scholar
  51. 51.
    U. Feige, A. Fiat and A. Shamir. Zero-Knowledge Proofs of Identity. J. of Crypto., Vol. 1, 1988, pages 77–94.CrossRefMathSciNetzbMATHGoogle Scholar
  52. 52.
    U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Based on a Single Random String. In 31th FOCS, pages 308–317, 1990. To appear in SIAM J. on Comput..Google Scholar
  53. 53.
    U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In 22nd STOC, pages 416–426, 1990.Google Scholar
  54. 54.
    P. Feldman. A Practical Scheme for Non-interactive Verifiable Secret Sharing. In 28th FOCS, pages 427–437, 1987.Google Scholar
  55. 55.
    A. Fiat. Batch RSA. J. of Crypto., Vol. 10, 1997, pages 75–88.CrossRefzbMATHGoogle Scholar
  56. 56.
    A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identification and Signature Problems. In Crypto86, Springer-Verlag LNCS (Vol. 263), pages 186–189, 1987.MathSciNetGoogle Scholar
  57. 57.
    R. Fischlin and C.P. Schnorr. Stronger Security Proofs for RSA and Rabin Bits. In Euro-Crypt97, Springer LNCS (Vol. 1233), pages 267–279, 1997.MathSciNetGoogle Scholar
  58. 58.
    A.M. Frieze, J. Håstad, R. Kannan, J.C. Lagarias, and A. Shamir. Reconstructing Truncated Integer Variables Satisfying Linear Congruences. SIAMJ. on Comput., Vol. 17, pages 262–280, 1988.CrossRefzbMATHGoogle Scholar
  59. 59.
    P.S. Gemmell. An Introduction to Threshold Cryptography. In CryptoBytes, RSA Lab., Vol. 2, No. 3, 1997.Google Scholar
  60. 60.
    O. Goldreich. Two Remarks Concerning the GMR Signature Scheme. In Crypto86, Springer-Verlag LNCS (Vol. 263), pages 104–110, 1987.MathSciNetGoogle Scholar
  61. 61.
    O. Goldreich. Lecture Notes on Encryption, Signatures and Cryptographic Protocol. Spring 1989. Available from Scholar
  62. 62.
    O. Goldreich. Foundation of Cryptography — Fragments of a Book. February 1995. Available from http://theory, Scholar
  63. 63.
    O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. J. of the ACM, Vol. 33, No. 4, pages 792–807, 1986.CrossRefMathSciNetGoogle Scholar
  64. 64.
    O. Goldreich, S. Goldwasser, and S. Micali. On the Cryptographic Applications of Random Functions. In Crypto84, Springer-Verlag LNCS (Vol. 263), pages 276–288, 1985.MathSciNetGoogle Scholar
  65. 65.
    O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman. Security Preserving Amplification of Hardness. In 31st FOCS, pages 318–326, 1990.Google Scholar
  66. 66.
    O. Goldreich and H. Krawczyk. On theComposition of Zero-Knowledge Proof Systems. SIAM J. on Comput., Vol. 25, No. 1, February 1996, pages 169–192.CrossRefMathSciNetzbMATHGoogle Scholar
  67. 67.
    O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st STOC, pages 25–32, 1989.Google Scholar
  68. 68.
    O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity or All Languages in NP Have Zero-Knowledge Proof Systems. J. of the ACM, Vol. 38, No. 1, pages 691–729, 1991. See also preliminary version in 27th FOCS, 1986.MathSciNetzbMATHGoogle Scholar
  69. 69.
    O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game — A Completeness Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229, 1987.Google Scholar
  70. 70.
    O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Systems. J. of Crypto., Vol. 7, No. 1, pages 1–32, 1994.MathSciNetzbMATHGoogle Scholar
  71. 71.
    O. Goldreich and R. Ostrovsky. Software Protection and Simulation on Oblivious RAMs. J. of the ACM, Vol. 43, 1996, pages 431–473.CrossRefMathSciNetzbMATHGoogle Scholar
  72. 72.
    S. Goldwasser and L. A. Levin. Fair Computation of General Functions in Presence of Immoral Majority. In Crypto90, Springer-Verlag LNCS (Vol. 537), pages 77–93.Google Scholar
  73. 73.
    S. Goldwasser and S. Micali. Probabilistic Encryption. J. of Comp. and Sys. Sci., Vol. 28, No. 2, pages 270–299, 1984. See also preliminary version in 14th STOC, 1982.CrossRefMathSciNetzbMATHGoogle Scholar
  74. 74.
    S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems. SIAM J. on Comput., Vol. 18, pages 186–208, 1989.CrossRefMathSciNetzbMATHGoogle Scholar
  75. 75.
    S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. on Comput., April 1988, pages 281–308.Google Scholar
  76. 76.
    S. Goldwasser, S. Micali and P. Tong. Why and How to Establish a Private Code in a Public Network. In 23rd FOCS, 1982, pages 134–144.Google Scholar
  77. 77.
    S. Goldwasser, S. Micali and A.C. Yao. Strong Signature Schemes. In 15th STOC, pages 431–439, 1983.Google Scholar
  78. 78.
    J. Håstad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom Generator from any One-Way Function. To appear in SIAM J. on Comput. Preliminary versions by Impagliazzo et. al. in 21st STOC (1989) and Håstad in 22nd STOC (1990).Google Scholar
  79. 79.
    J. Håstad, A. Schrift and A. Shamir. The Discrete Logarithm Modulo a Composite Hides O(n) Bits. J. of Comp. and Sys. Sci., Vol. 47, pages 376–404, 1993.CrossRefzbMATHGoogle Scholar
  80. 80.
    A. Herzberg, S. Jarecki, H. Krawczyk and M. Yu. Proactive Secret Sharing, or How to Cope with Perpetual Leakage. In Crypto95, Springer-Verlag LNCS (Vol. 963), pages 339–352.Google Scholar
  81. 81.
    R. Impagliazzo and M. Luby. One-Way Functions are Essential for Complexity Based Cryptography. In 30th FOCS, pages 230–235, 1989.Google Scholar
  82. 82.
    R. Impagliazzo and M. Naor. Efficient Cryptographic Schemes Provable as Secure as Subset Sum. J. of Crypto., Vol. 9, 1996, pages 199–216.CrossRefMathSciNetzbMATHGoogle Scholar
  83. 83.
    R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-Way Permutations. In 21st STOC, pages 44–61, 1989.Google Scholar
  84. 84.
    R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. In Crypto87, Springer-Verlag LNCS (Vol. 293), pages 40–51, 1987.Google Scholar
  85. 85.
    A. Juels, M. Luby and R. Ostrovsky. Security of Blind Digital Signatures. These proceedings.Google Scholar
  86. 86.
    J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In 24th STOC, pages 723–732, 1992.Google Scholar
  87. 87.
    J. Kilian and E. Petrank. An Efficient Non-Interactive Zero-Knowledge Proof System for NP with General Assumptions. To appear in J. of Crypto..Google Scholar
  88. 88.
    E. Kushilevitz and R. Ostrovsky. Replication Is NOT Needed: A SINGLE Database, Computational PIR. TR CS0906, Department of Computer Science, Technion, May 1997.Google Scholar
  89. 89.
    L.A. Levin. One-Way Function and Pseudorandom Generators. Combinatorica, Vol. 7, pages 357–363, 1987.CrossRefMathSciNetzbMATHGoogle Scholar
  90. 90.
    M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University Press, 1996.Google Scholar
  91. 91.
    M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations from Pseudorandom Functions. SIAM J. on Comput., Vol. 17, 1988, pages 373–386.CrossRefMathSciNetzbMATHGoogle Scholar
  92. 92.
    R.C. Merkle. Protocols for public key cryptosystems. In Proc. of the 1980 Symposium on Security and Privacy.Google Scholar
  93. 93.
    R.C. Merkle. A Digital Signature Based on a Conventional Encryption Function. In Crypto87, Springer-Verlag LNCS (Vol. 293), 1987, pages 369–378.Google Scholar
  94. 94.
    R.C. Merkle. A Certified Digital Signature Scheme. In Crypto89, Springer-Verlag LNCS (Vol. 435), pages 218–238.Google Scholar
  95. 95.
    S. Micali. Fair Public-Key Cryptosystems. In Crypto92, Springer-Verlag LNCS (Vol. 740), pages 113–138.Google Scholar
  96. 96.
    S. Micali and P. Rogaway. Secure Computation. In Crypto91, Springer-Verlag LNCS (Vol. 576), pages 392–404.Google Scholar
  97. 97.
    National Institute for Standards and Technology. Digital Signature Standard (Dss), Federal Register, Vol. 56, No. 169, August 1991.Google Scholar
  98. 98.
    M. Naor. Bit Commitment using Pseudorandom Generators. J. of Crypto., Vol. 4, pages 151–158, 1991.MathSciNetzbMATHGoogle Scholar
  99. 99.
    M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Zero-Knowledge Arguments for NP can be Based on General Assumptions. In Crypto92, Springer-Verlag LNCS (Vol. 740), pages 196–214.Google Scholar
  100. 100.
    M. Naor and B. Pinkas. Visual Authentication and Identification. These proceedings.Google Scholar
  101. 101.
    M. Naor and O. Reingold. Synthesizers and their Application to the Parallel Construction of Pseudo-Random Functions. In 36th FOCS, pages 170–181, 1995.Google Scholar
  102. 102.
    M. Naor and O. Reingold. On the Construction of Pseudo-Random Permutations: Luby-Rackoff Revisited. In 29th STOC, pages 189–199,1997.Google Scholar
  103. 103.
    M. Naor and A. Shamir. Visual Cryptography. In EuroCrypt94, Springer-Verlag LNCS (Vol. 950), 1995, pages 1–12.MathSciNetGoogle Scholar
  104. 104.
    M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic Application. 21st STOC, 1989, pp. 33–43.Google Scholar
  105. 105.
    M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure Against Chosen Ciphertext Attacks. In 22nd STOC, pages 427–437, 1990.Google Scholar
  106. 106.
    R. Ostrovsky and A. Wigderson. One-Way Functions are essential for Non-Trivial Zero-Knowledge. ⇎nd Israel Symp.on Theory of Computing and Systems, IEEE Comp. Soc. Press, pages 3–17, 1993.Google Scholar
  107. 107.
    R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. In 10th Symp. on Principles of Distributed Computing, pages 51–59, 1991.Google Scholar
  108. 108.
    B. Pfitzmann. Digital Signature Schemes (General Framework and Fail-Stop Signatures). Springer LNCS (Vol. 1100), 1996.Google Scholar
  109. 109.
    M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computation (R.A. DeMillo et. al. eds.), Academic Press, 1977.Google Scholar
  110. 110.
    M.O. Rabin. Digitalized Signatures and Public Key Functions as Intractable as Factoring. MIT/LCS/TR-212, 1979.Google Scholar
  111. 111.
    M.O. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81, Aiken Computation Laboratory, Harvard U., 1981.Google Scholar
  112. 112.
    T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols with Honest Majority. In 21st STOC, pages 73–85, 1989.Google Scholar
  113. 113.
    R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public Key Cryptosystems. CACM, Vol. 21, Feb. 1978, pages 120–126.MathSciNetzbMATHGoogle Scholar
  114. 114.
    J. Rompel. One-way Functions are Necessary and Sufficient for Secure Signatures. In 22nd STOC, 1990, pages 387–394.Google Scholar
  115. 115.
    C.E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech. J., Vol. 28, pages 656–715, 1949.MathSciNetzbMATHGoogle Scholar
  116. 116.
    A. Shamir. How to Share a Secret. CACM, Vol. 22, Nov. 1979, pages 612–613.MathSciNetzbMATHGoogle Scholar
  117. 117.
    U.V. Vazirani and V.V. Vazirani. Efficient and Secure Pseudo-Random Number Generation. 25th FOCS, pages 458–463, 1984.Google Scholar
  118. 118.
    M. Wegman and L. Carter. New Hash Functions and their Use in Authentication and Set Equality. J. of Comp. and Sys. Sci., Vol. 22, 1981, pages 265–279.CrossRefMathSciNetzbMATHGoogle Scholar
  119. 119.
    A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80–91, 1982.Google Scholar
  120. 120.
    A.C. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167, 1986.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  1. 1.Department of Computer Science and Applied MathematicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations