Connected sets of types and categorial consequence

  • Jacek Marciniec
Selected Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1328)


Being a complement to [9], which concerns mainly general properties of infinite, unifiable sets of arbitrary terms, this paper provides an analysis of some specific features of sets of types and their behaviour under the influence of substitutions, especially unifiers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Buszkowski, Solvable Problems for Classical Categorial Grammars, Bull. Pol. Acad. Scie. Math. 35 (1987), pp. 373–382.MATHMathSciNetGoogle Scholar
  2. 2.
    W. Buszkowski, Discovery Procedures for Categorial Grammars, in [6].Google Scholar
  3. 3.
    W. Buszkowski and G. Penn, Categorial Grammars Determined from Linguistic Data by Unification, Studia Logica XLIX, 4 (1990), pp. 431–454.CrossRefMathSciNetGoogle Scholar
  4. 4.
    M. Kanazawa, Identification in the Limit of Categorial Grammars, Journal of Logic, Language and Information, Vol. 5 No. 2, (1996), pp. 115–155.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Kanazawa, Learnable Classes of Categorial Grammars, Dissertation, Stanford University, 1994.Google Scholar
  6. 6.
    E. Klein and J. van Benthem (eds), Categories, Polymorphism an Unification, Universiteit van Amsterdam, Amsterdam, 1987.Google Scholar
  7. 7.
    J. W. Lloyd, Foundations of Logic Programming, Springer-Verlag, Berlin, 1987.MATHGoogle Scholar
  8. 8.
    J. Marciniec, Learning Categorial Grammars by Uniffcation with Negative Constraints, Journal of Applied Non-Classical Logics, 4 (1994), pp. 181–200.MATHMathSciNetGoogle Scholar
  9. 9.
    J. Marciniec, Infinite Set Unification with Application to Categorial Grammar, Studia Logica LVIII, 3 (1997), to appear.Google Scholar
  10. 10.
    J. van Benthem, Categorial Equations, in [6].Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Jacek Marciniec
    • 1
  1. 1.Adam Mickiewicz UniversityPoznanPoland

Personalised recommendations