Advertisement

Path planning using a subgoal graph

  • Martin Eldracher
  • Thomas Pic
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1337)

Abstract

This article is concerned with generation of kinematic trajectories for manipulators. For quick planning we use a graph-based algorithm that already allows to plan at least some motions from the beginning of the graph construction process, and hence omits long preprocessing phases. Unless specific tasks are given, we use random configurations for incremental graph construction. The graph is constructed in configuration-space of manipulators. Its nodes serve as subgoals and its edges as collision free sub-trajectories for planning new, unknown trajectories. We show the high performance of this approach with respect to preprocessing and trajectory generation time, as well as planning success in a realistic simulation of a real world manipulator task.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.S. Albus, editor. Brains, Behaviour, and Robotics. Byte Books, 1981.Google Scholar
  2. 2.
    S. Berchtold and B. Glavina. A scalable optimizer for automatically generated manipulator motions. In Proc. of IEEE/RSJ/GI Int. Conf. on Intelligent Robots and Systems IROS-94, pages 1796–1802, Munich, Germany, September 1994.Google Scholar
  3. 3.
    A.P. del Pobil and M.A. Serna. Spatial Representation and Motion Planning, volume 1014 of Lecture Notes in Computer Sciences. Springer, Berlin, 1995.Google Scholar
  4. 4.
    M. Eldracher. Neural subgoal generation with subgoal graph: An approach. In World Congress on Neural Networks WCNN-94, San Diego, pages II–142–II–146. Lawrence Erlbaum Associates, Inc., Publishers, Hillsdale, June 1994.Google Scholar
  5. 5.
    Th. Horsch, F. Schwarz, and H. Tolle. Motion planning with many degrees of freedom — random reflections at c-space obstacles. In 1994 IEEE International Conference on Robotics and Automation, San Diego, pages 3318–3323, 1994.Google Scholar
  6. 6.
    Y.K. Hwang and N. Ahuja. Gross motion planning a survey. ACM Computing Surveys, 3(24):219–291, 1992.CrossRefGoogle Scholar
  7. 7.
    L. Kavraki and J.C. Latombe. Randomized preprocessing of configuration space for fast path planning. In 1994 IEEE International Conference on Robotics and Automation, San Diego, pages 2138–2145, 1994.Google Scholar
  8. 8.
    J.C. Latombe. Robot Motion Planning. Kluwer Academic Press, Boston, 1991.Google Scholar
  9. 9.
    Th. Pic. Versuche zur neuronalen Subzielgenerierung. Fortgeschrittenenpraktikum, Prof. Dr. Brauer, October 1994. Technische Universität München.Google Scholar
  10. 10.
    H. Tolle and E. Ersü. Neurocontrol. Learning Control Systems Inspired by Neuronal Architectures and Human Problem Solving Strategies, volume 172 of Lecture Notes in Control and Information Sciences. Springer, Berlin, 1992.Google Scholar
  11. 11.
    O. v. Stryk. Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Parameteroptimierung und Berechnung der adjungierten Variablen. PhD thesis, Mathematisches Institut, Technische Universität München, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Martin Eldracher
    • 1
  • Thomas Pic
    • 1
  1. 1.Fakultät für InformatikTechnische Universität MünchenMünchenGermany

Personalised recommendations