On the arrangement complexity of uniform trees

  • Günter Hotz
  • Hongzhong Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1337)


This paper studies the arrangement problem of uniform trees and shows that the arrangement complexity of a uniform tree is either θ(1) or Ω((lg n)γ)(γ > 0). It also presents a recursive algorithm to compute the optimal complete arrangements for θ(1) arrangeable balanced uniform trees.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BeHa90]
    B. Becker, and J. Hartmann. Optimal-Time Multipliers and C-Testability. Proceedings of the 2nd Annual Symposium on Parallel Algorithms and Architectures, pp.146–154, 1990.Google Scholar
  2. [BeSp91]
    B. Becker, and U. Sparmann. Computations over Finite Monoids and their Test Complexity. Theoretical Computer Science, pp.225–250, 1991.Google Scholar
  3. [FSTH90]
    R. Fritzemeier, J. Soden, R. K. Treece, and C. Hawkins. Increased CMOS IC stuck-at fault coverage with reduced IDDQ test sets. International Test Conference, pp.427–435, 1990Google Scholar
  4. [Haye71]
    J. P. Hayes. On Realizations of Boolean Functions Requiring a Minimal or Near-Minimal Number of Tests. IEEE Trans. on Computers Vol. C-20, No. 12, pp.1506–1513, 1971.MathSciNetGoogle Scholar
  5. [Hotz65]
    G. Hotz. Eine Algebraisierung des Syntheseproblems von Schaltkreisen. EIK 1, 185–205, 209–231, 1965.MATHMathSciNetGoogle Scholar
  6. [Hotz74]
    G. Hotz. Schaltkreistheorie. Walter de Gruyter · Berlin · New York 1974.MATHGoogle Scholar
  7. [HoWu95]
    G. Hotz, H. Wu. “On the Arrangement Complexity of Uniform Trees”, Technical Report, SFB 124-B1, 05/1995, FB-14, Informatik, Universität des Saarlandes, Germany.Google Scholar
  8. [SeKo77]
    S. C. Seth, and K.L. Kodandapani. Diagnosis of Faults in Linear Tree Networks. IEEE Trans. on Computers, C-26(1), pp.29–33, 1977.MathSciNetCrossRefGoogle Scholar
  9. [Wu92]
    H. Wu. On Tests of Uniform Tree Circuits. Proceeding of CONPAR VAPP V, pp.527–538, 1992.Google Scholar
  10. [WuSp92]
    H. Wu, U. Sparmann. On the Assignments Complexity of Tree VLSI Systems. Proceeding of 7th International Symposium on Computer and Information Sciences, pp.97–103, 1992.Google Scholar
  11. [Wu93]
    H. Wu. On the Assignments Complexity of Uniform Trees. Proceeding of International Symposium on Symbolic and Algebraic Computation, ISSAC' 93, pp.95–104.Google Scholar
  12. [Wu94]
    H. Wu. On the Test Complexity of VLSI Systems, Dissertation, University of Saarland, 1994Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Günter Hotz
    • 1
  • Hongzhong Wu
    • 1
  1. 1.14-InformatikUniversität des SaarlandesDeutschland

Personalised recommendations