Representation theorems for Petri Nets

  • José Meseguer
  • Ugo Montanari
  • Vladimiro Sassone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1337)


This paper retraces, collects, summarises, and mildly extends the contributions of the authors — both together and individually — on the theme of representing the space of computations of Petri nets in its mathematical essence.

Key words and phrases

Semantics of Concurrency Noninterleaving Processes Petri Nets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Best and R. Devillers (1987), Sequential and Concurrent Behaviour in Petri Net Theory, Theoretical Computer Science n. 55, 87–136.CrossRefMathSciNetGoogle Scholar
  2. [2]
    C. Brown D. Gurr, andV. de Paiva (1991), A Linear Specification Language for Petri Nets, Technical Report DAIMI PB-363, Computer Science Department, University of Aarhus.Google Scholar
  3. [3]
    P. Degano J. Meseguer, andU. Montanari (1989), Axiomatizing Net Computations and Processes, in Proceedings LICS'89, IEEE Computer Society Press, 175–185.Google Scholar
  4. [4]
    P. Degano, J. Meseguer, and U. Montanari (1996), Axiomatizing the Algebra of Net Computations and Processes, in Acta Informatica n. 33, 641–667.CrossRefMathSciNetGoogle Scholar
  5. [5]
    U. Goltz and W. Reisig (1983), The Non Sequential Behaviour of Petri Nets, Information and Computation n. 57, 125–147.MathSciNetGoogle Scholar
  6. [6]
    J. Meseguer and U. Montanari (1990), Petri Nets are Monoids, Information and Computation n. 88, 105–154.CrossRefMathSciNetGoogle Scholar
  7. [7]
    J. Meseguer, U. Montanari, and V. Sassone (1996), Process versus Unfolding Semantics for Place/Transition Petri Nets, Theoretical Computer Science n. 153, 171–210.CrossRefMathSciNetGoogle Scholar
  8. [8]
    J. Meseguer U. Montanari, andV. Sassone (1997), On the Semantics of PlaceTransition Petri Nets, Mathematical Structures in Computer Science, to appear. Avalaible by anonymous ftp at vs.Google Scholar
  9. [9]
    M. Nielsen, G. Plotkin, and G. Winskel (1981), Petri Nets, Event Structures and Domains, Part 1, Theoretical Computer Science n. 13, 85–108.CrossRefMathSciNetGoogle Scholar
  10. [10]
    C.A. Petri (1962), Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle Mathematik.Google Scholar
  11. [11]
    C.A. Petri (1973), Concepts of Net Theory, in Proceedings of MFCS'73, Mathematics Institute of the Slovak Academy of Science, 137–146.Google Scholar
  12. [12]
    C.A. Petri (1977), Non Sequential Processes, Interner Bericht ISF-77-5, Gesellschaft für Mathematik und Datenverarbeitung.Google Scholar
  13. [13]
    W. Reisig (1985), Petri Nets. Springer-Verlag.Google Scholar
  14. [14]
    V. Sassone (1995), Axiomatizing Petri Net Concatenable Processes, in Proceedings of FCT'95, H. Reichel (Ed.), LNCS n. 965, Springer-Verlag, 414–423.Google Scholar
  15. [15]
    V. Sassone (1995), On the Category of Petri Net Computations, in Proceedings of TAPSOFT'95, P.D. Mosses et al (Eds.), LNCS n. 915, Springer-Verlag, 334–348.Google Scholar
  16. [16]
    V. Sassone (1996), An Axiomatization of the Algebra of Petri Net Concatenable Processes, Theoretical Computer Science n. 170, 277–296.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    V. Sassone, An Axiomatization of the Category of Petri Net Computations. Submitted for publication. Avalaible by anonymous ftp at vs.Google Scholar
  18. [18]
    G. Winskel (1987), Petri Nets, Algebras, Morphisms and Compositionality, Information and Computation n. 72, 197–238.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • José Meseguer
    • 1
  • Ugo Montanari
    • 2
  • Vladimiro Sassone
    • 2
  1. 1.Computer Science Lab.SRI InternationalMenlo Park
  2. 2.Dipartimentodi InformaticaUniversitadi PisaPisaItaly

Personalised recommendations