Advertisement

Organic polymer hybrids with silica gel formed by means of the sol-gel method

  • Yoshiki Chujo
  • Takeo Saegusa
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 100/1)

Abstract

This article describes organic polymer hybrids with silica gels formed by means of the sol-gel method. The incorporation of organic polymers at the level of molecular dispersion into a metal oxide matrix was accomplished by the hydrolysis-condensation of tetraalkoxysilane (orthosilicate ester) in the presence of the appropriate organic polymer.

Especially, organic polymers consisting of amide groups such as poly(2-methyl-2-oxazoline) were found to form molecular hybrids with silica gel through strong hydrogen bonding. The obtained organic-inorganic polymer hybrids were homogeneous and transparent glassy composite materials in a wide range of the contents of organic polymers. The homogeneity of the hybrid may be due to the molecular dispersion of organic polymer in the silica gel matrix, which is ascribed to the formation of hydrogen bonds between the polymer amide group and silanol group of the silica gel. The occurrence of this hydrogen bond was actually supported by FT-IR spectra of hybrids. Organic-inorganic polymer hybrids having chemical bonds at the ends of organic polymer segments were also prepared strating from polyoxazoline silane coupling agents. The water-adsorption properties of these hybrids showed the hydrophilic or amphiphilic modification of the silica gel.

Another interesting material is porous silica gel with controlled-size pores which is prepared by the pyrolysis of the hybrid at a temperature far below the fusing point of silica gel.

Keywords

Organic Polymer Porous Silica Polymer Hybrid Polym Prep Tetramethylene Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10 References

  1. 1.
    Mark JE, Pan SJ (1982) Makromol Chem Rapid Commun 3: 681CrossRefGoogle Scholar
  2. 2.
    Ning YP, Tang MY, Jiang CY, Mark JE (1984) J Appl Polym Sci 29: 3209CrossRefGoogle Scholar
  3. 3.
    Mark JE, Jiang CY, Tang MY (1984) Macromolecules 17: 2613CrossRefGoogle Scholar
  4. 4.
    Tang MY, Mark JE (1984) Macromolecules 17: 2616CrossRefGoogle Scholar
  5. 5.
    Mark JE (1988) Am Chem Soc, Polym Mat Sci & Eng, 58: 106Google Scholar
  6. 6.
    Clarson SJ, McCarthy DW, Mark JE (1989) Am Chem Soc, Polym Prep, 30(1): 298Google Scholar
  7. 7.
    Wang SH, Mark JE (1990) Macromolecules, 23: 4288CrossRefGoogle Scholar
  8. 8.
    Espland P, Mark JE, Guyot A (1990) Polym Bull, 24: 173CrossRefGoogle Scholar
  9. 9.
    Huang HH, Glaser RH, Wilkes GL (1988) Am Chem Soc, Symp Ser, 360: 354Google Scholar
  10. 10.
    Wilkes GL, Orler B, Huang HH (1985) Am Chem Soc, Polym Prep, 26(2): 300Google Scholar
  11. 11.
    Huang HH, Orler B, Wilkes GL (1985) Polym Bull, 14: 557CrossRefGoogle Scholar
  12. 12.
    Huang HH, Orler B, Wilkes GL (1987) Macromolecules, 20: 1322CrossRefGoogle Scholar
  13. 13.
    Huang HH, Wilkes GL, Carlson JG (1989) Polymer, 30: 2001CrossRefGoogle Scholar
  14. 14.
    Brennan AB, Huang HH, Wilkes GL (1989) Am Chem Soc, Polym Prep, 30(2): 105Google Scholar
  15. 15.
    Glaser RH, Wilkes GL (1988) Polym Bull, 19: 51CrossRefGoogle Scholar
  16. 16.
    Brennan AB, Wang B, Rodrigues DE, Wilkes GL (1990) Am Chem Soc, Polym Prep, 30(2): 146Google Scholar
  17. 17.
    Glaser RH, Wilkes GL (1989) Polym Bull, 22: 527CrossRefGoogle Scholar
  18. 18.
    Wang B, Huang HH, Brennan AB, Wilkes GL (1989) Am Chem Soc, Polym Prep, 30(2): 146Google Scholar
  19. 19.
    Noell JLW, Wilkes GL, Mohanty DK, McGrath JE (1990) J Appl Polym Sci, 40: 1177CrossRefGoogle Scholar
  20. 20.
    Wang B, Huang HH, Wilkes GL, Liptak S, McGrath JE (1990) Am Chem Soc, Polym Mat Sci & Eng, 62: 892Google Scholar
  21. 21.
    Novak BM, Ellsworth M, Wallow T, Davies C (1990) Am Chem Soc, Polym Prep, 31(2): 698Google Scholar
  22. 22.
    Saegusa T, Chujo Y (1989) Pacific Polym Prep, 1: 39Google Scholar
  23. 23.
    Kure S, Matsuki H, Jordan R, Chujo Y, Saegusa T (1990) Polym Prep Jpn, 39: 1684Google Scholar
  24. 24.
    Saegusa T, Kobayashi S (1976) Encyclopedia of polymer science and technology. Suppl vol 1: 220Google Scholar
  25. 25.
    Kobayashi S, Saegusa T (1984) Ivin K, Saegusa T (eds) in: Ring-opening polymerization. 2: 761. Elsevier, LondonGoogle Scholar
  26. 26.
    Kobayashi S, Saegusa T (1985) Makromol Chem, Suppl 12: 11CrossRefGoogle Scholar
  27. 27.
    Saegusa T (1988) Makromol Chem, Macromol Symp, 13/14: 111Google Scholar
  28. 28.
    Saegusa T, Chujo Y (1989) in: Saegusa T, Higashimura T, Abe A (eds) Frontiers of macromolecular science (Proc 32nd IUPAC Int Symp on Macromolecules, 1988, Kyoto, Japan), Blackwell Scientific p 119Google Scholar
  29. 29.
    Chujo Y, Ihara E, Ihara H, Saegusa T (1989) Macromolecules, 22: 2040CrossRefGoogle Scholar
  30. 30.
    Chujo Y, Ihara E, Ihara H, Saegusa T (1988) Polym Bull, 19: 435CrossRefGoogle Scholar
  31. 31.
    Chujo Y, Ihara E, Kure S, Suzuki K, Saegusa T (1990) Am Chem Soc, Polym Prep, 31(1): 59CrossRefGoogle Scholar
  32. 32.
    Chujo Y, Ihara E, Kure S, Suzuki K, Saegusa T (1991) Makromol Chem, Macromol Symp, 42/43: 303Google Scholar
  33. 33.
    Saegusa T, Chujo Y (1990) J Macromol Sci, Chem, A27: 1603Google Scholar
  34. 34.
    Kure S, Ihara E, Chujo Y, Saegusa T, Yazawa T, Eguchi K (1990) Polym Prep Jpn, 39: 1681Google Scholar
  35. 35.
    Tomalia DA (1990) Angew Chem, Int Ed Engl, 29: 138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Yoshiki Chujo
    • 1
  • Takeo Saegusa
    • 1
  1. 1.Department of Synthetic Chemistry, Faculty of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations