Advertisement

Catalysis pp 1-38 | Cite as

The catalytic activity of organic and metallo-organic compounds in heterogeneous systems

Conference paper
Part of the Fortschritte der Chemischen Forschung book series (TOPCURRCHEM, volume 25/1)

Keywords

Catalytic Activity Heterogeneous System Molecular Hydrogen Organic Polymer Oxidative Dehydrogenation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Hanke, W.: Heterogene Katalyse an halbleitenden organischen Verbindungen. Z. Chem. 9, 1 (1969).CrossRefGoogle Scholar
  2. 2).
    Roginski, S. Z., Sakharov, M. M.: Catalytic Properties of Organic Semiconductors. Russ. J. Phys. Chem. (English Transl.) 42, 696 (1968).Google Scholar
  3. 3).
    Krause, H. W.: Organische Halbleiterkatalysatoren. Fortschr. Chem. Forsch. 6, 327 (1966).Google Scholar
  4. 4).
    Charentenay, F. X. de, Castel, P., Theyssié, Ph.: Polymères Semi-Conducteurs. Rev. Inst. Franc. Pétrole Ann. Combust. 18, 1126 (1963).Google Scholar
  5. 5).
    Leftin, H. P., Hermana, E.: Optical Spectra of Adsorbed Molecules. Mechanism of Stereo Selective Olefin Isomerisation on Silica-Alumina. Proc. Third Intern. Congr. Catalysis. Vol. II, p. 1064. Amsterdam: North Holland Publ. Comp. 1965.Google Scholar
  6. 6).
    Manassen, J., Klein, F. S.: Reactions of n-Butene and Butan-2-ol in Dilute Acid. The Elucidation of the Mechanism and the Intermediate in Elimination from Secondary Alcohols and in the Hydration of Olefins. J. Chem. Soc. 1960, 4203.Google Scholar
  7. 7).
    Szwarc, M.: Carban Ions, Living Polymers and Electron Transfer Processes. New York: Interscience Publ. 1968.Google Scholar
  8. 8).
    Woodward, R. G., Hoffmann, R.: The Conservation of Orbital Symmetry. New York: Acad. Press 1969; Fukui, K.: Orientation and Stereoselection. Fortschr. Chem. Forsch. 15, 1 (1970).Google Scholar
  9. 9).
    Cassar, L., Eaton, Ph. E., Halpern, J.: Catalysis of Symmetry Restricted Reactions by Transition Metal Compounds. J. Am. Chem. Soc. 92, 3515 (1970).CrossRefGoogle Scholar
  10. 10).
    Lugt, W. Th. A. M. van der: Symmetry Control and Transition Metal Catalyzed Reactions Tetrahedron Letters 1970, 2281.Google Scholar
  11. 11).
    Trapnell, B. M. W.: The Parahydrogen and Orthodeuterium Conversions and the Hydrogen-Deuterium Exchange. Catalysis, Vol. III (ed. Paul H. Emmett), p. 1. New York: Reinhold 1955.Google Scholar
  12. 12).
    Cremer, E.: Heterogene Ortho-und Parawasserstoffkatalyse. Handb. Katalyse, Vol. VI (ed. G.-M. Schwab). Heterogene Katalyse III, p. 1. Wien: Springer Verlag 1943.Google Scholar
  13. 13).
    Wigner, E.: über die paramagnetische Umwandlung von Para-Orthowasserstoff III. Z. Phys. Chem. B 23, 28 (1933).Google Scholar
  14. 14).
    Farkas, L., Sachsse, H.: über die homogene Katalyse der Para-Orthowasserstoffumwandlung unter Einwirkung paramagnetischer Moleküle I, II. Z. Phys. Chem. B 23, 1, 19 (1933).Google Scholar
  15. 15).
    Schwab, G.-M., Agallidis, E.: über die Einwirkung von Organischen Radikalen auf Para-Wasserstoff. Z. Phys. Chem. B 41, 59 (1938).Google Scholar
  16. 16).
    Bonhoeffer, K. F., Harteck, D.: über Para-und Ortho-Wasserstoff. Z. Phys. Chem. B 4, 113 (1929).Google Scholar
  17. 17).
    Rummel, K. W.: über die Parawasserstoff-Umwandlung an Kohle-OberflÄchen bei tiefen Temperaturen. Z. Phys. Chem. A 167, 221 (1933).Google Scholar
  18. 18).
    Bonhoeffer, K. F., Farkas, A., Rummel, K. W.: über die heterogene Katalyse der Parawasserstoffumwandlung. Z. Phys. Chem. B 21, 225 (1933).Google Scholar
  19. 19).
    Calvin, M., Cockbain, E. G., Polanyi, M.: Activation of Hydrogen by Phthalocyanine and Copper-Phthalocyanine. Part. I. Trans. Faraday Soc. 32, 1436 (1936).CrossRefGoogle Scholar
  20. 20).
    -, Eley, D. D., Polanyi, M.: Activation of Hydrogen by Phthalocyanine and Copper-Phthalocyanine. Part. II. Trans. Faraday Soc. 32, 1443 (1936).CrossRefGoogle Scholar
  21. 21).
    Eley, D. D.: The Conversion of Parahydrogen by Porphyrin Compounds, Including Hemoglobin. Trans. Faraday Soc. 36, 500 (1940).CrossRefGoogle Scholar
  22. 22).
    Turkevich, J., Selwood, P. W.: Solid Free Radical as Catalyst for Ortho-Para-Hydrogen Conversion. J. Am. Chem. Soc. 63, 1077 (1941).CrossRefGoogle Scholar
  23. 23).
    Harrison, L. G., McDowell, E. A.: The Catalysis of the Para-Hydrogen Conversion by the Solid Free Radical α, α′-diphenyl-Β-picryl Hydrazyl. Proc. Roy. Soc. London Ser. A, 220, 77 (1953).CrossRefGoogle Scholar
  24. 24).
    Eley, D. D., Inokuchi, H.: Organic Solids and Heterogeneous Catalysis. Electron Transfer in α,α′-diphenyl-Β-Pycryl-Hydrazyl. Z. Elektrochem. 63, 29 (1959).Google Scholar
  25. 25).
    Turkevich, J., Laroche, J.: Catalytic Activity of a Graded Set of Charcoals for the Hydrogen-Deuterium Equilibration and the Ortho-Para Hydrogen Conversion and Electron Spin Resonance. Z. Phys. Chem. N.F. 15, 399 (1958).Google Scholar
  26. 26).
    Acres, G. J. K., Eley, D. D.: Activation of Hydrogen by Polycopperphthalocyanine. Trans. Faraday Soc. 60, 1157 (1964).CrossRefGoogle Scholar
  27. 27).
    Davydova, I. R., Kiperman, S. L., Slinkin, A. A., Dulov, A. A.: On the Catalytic Activity of Certain Synthetic Organic Polymers Bull. Acad. Sci. USSR (English Transl.) 1964. 1502.Google Scholar
  28. 28).
    Tamaru, Kenzi: Catalysis by Electron Donor-Acceptor Complexes. Advan. Catalysis 20, 327 (1969).CrossRefGoogle Scholar
  29. 29).
    Kondow, T., Inokuchi, H., Wakayama, N.: Ortho-Para Hydrogen Conversion and Hydrogen-Deuterium Exchange in the Presence of Tetracyanopyrene-Cesium Complex. J. Chem. Phys. 43, 3766 (1965).CrossRefGoogle Scholar
  30. 30).
    Inokuchi, H., Wakayama, N., Kondow, T., Mori, Y.: Activated Adsorption of Hydrogens on Aromatic-Alkalimetal Charge-Transfer Complexes. J. Chem. Phys. 46, 837 (1967).CrossRefGoogle Scholar
  31. 31).
    -, Mori, Y., Wakayama, N.: Hydrogen Exchange between Deuterium and Charge-Transfer Complexes. J. Catalysis 8, 288 (1967).CrossRefGoogle Scholar
  32. 32).
    -, Wakayama, N., Hirooka, T.: Effect of Chemisorption of Hydrogen on Electrical Conductivity of Perylene-Cesium Charge-Transfer Complexes. J. Catalysis 8, 383 (1967); 8, 383(1967).CrossRefGoogle Scholar
  33. 33).
    Ichikawa, M., Soma, M., Onishi, T., Tamaru, K.: Reactivity of Electron Donor-Acceptor Complexes. Part. 8. Exchange Reaction of Hydrogen between Various Phthalocyanine EDA Complexes and Acetylene or Molecular Hydrogen. Trans. Faraday Soc. 63, 1215 (1967).CrossRefGoogle Scholar
  34. 34).
    -, Reactivity of Electron Donor-Acceptor Complexes. Part. 6. Hydrogen Exchange of Aromatic Cyano-Substituted Compounds. Trans. Faraday Soc. 63, 997 (1967).CrossRefGoogle Scholar
  35. 35).
    Wakayama, N., Inokuchi, H.: Catalytic Behavior of Organic Semiconductors. Hydrogen Exchange on Aromatic-Alkali-Metal Charge-Transfer Complexes. J. Catalysis 11, 143 (1968).CrossRefGoogle Scholar
  36. 36).
    -, Mori, Y., Inokuchi, H.: Catalytic Behavior of Organic Semiconductros. Relation Between Reactivity and Valency of Aromatic in Aromatic-Alkali Metal Complexes. J. Catalysis 12, 15 (1968).CrossRefGoogle Scholar
  37. 37).
    -, Inokuchi, H.: Catalytic Behavior of Organic Semiconductors. Hydrogen Exchange on Barium-Naphthacene Ion Salts. J. Catalysis 15, 417 (1969).CrossRefGoogle Scholar
  38. 38).
    Ichikawa, M., Soma, M., Onishi, T., Tamaru, K.: Exchange Reactions of Hydrogen over the Electron Donor-Acceptor Complexes of Various Phthalocyanines with Sodium. J. Catalysis 6, 336 (1966).CrossRefGoogle Scholar
  39. 39).
    -: Hydrogen Exchange Reaction between Molecular Hydrogen and the Electron Donor-Acceptor Complexes of Various Aromatic Compounds. Bull. Chem. Soc. Japan 40, 1015 (1967).Google Scholar
  40. 40).
    Tanaka, S., Ichikawa, M., Naito, S., Soma, M., Onishi, T., Tamaru, K.: The Behavior of Hydrogen Chemisorbed over the Electron Donor-Acceptor Complexes of Aromatic Hydrocarbons with Sodium in the Hydrogen Exchange and Hydrogenation Reaction. Bull. Chem. Soc. Japan 41, 1278 (1968).Google Scholar
  41. 41).
    Ichikawa, M., Soma, M., Onishi, T., Tamaru, K.: Reactivity of Electron Donor-Acceptor Complexes of Aromatic Compounds. Bull. Chem. Soc. Japan 40, 1294 (1967).Google Scholar
  42. 42).
    -: Reactivity of Electron Donor-Acceptor Complexes. Part 9. Isomerisation of Butene. Trans. Faraday Soc. 63, 2012 (1967).CrossRefGoogle Scholar
  43. 43).
    -: Reaction between Molecular Hydrogen and Various Electron Donor-Acceptor Complexes of Aromatic Hydrocarbons with Sodium. Their Electronic Properties. J. Am. Chem. Soc. 91, 6505 (1969).CrossRefGoogle Scholar
  44. 44).
    Haber, F., Weiss, J.: The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts. Proc. Roy. Soc. (London), Ser. A, 147, 332 (1934).Google Scholar
  45. 45).
    Gallard-Nechtstein, J., Salle, R., Traynard, Ph.: Catalyse sur Polychélates. C. R. Acad. Sci. Paris, Ser. C, 262, 949 (1966).Google Scholar
  46. 46).
    Cook, A. H.: Catalytic Properties of the Phthalocyanines. Part. I. Catalase Properties. J. Chem. Soc. 1938, 1761.Google Scholar
  47. 47).
    Roginskii, S. Z., Berlin, A. A., Golovina, O. A., Dokukina, E. S., Sakharov, M. M., Cherkashina, L. G.: Catalytic Activity of Polyphthalocyanines with Respect to the Decomposition of Hydrogen Peroxide. Kinetica Katal. 4, 431 (1963); C. A. 59, 5833d (1963).Google Scholar
  48. 48).
    Levina, S. D., Andrianova, T. I., Sakharov, M. M., Golovina, O. A., Lobanova, K. P., Rotenberg, Z. A.: Catalytic Properties of Systems Consisting of Powered Metals and Phthalocyanines. Russ. J. Phys. Chem. (English Transl.) 40, 660 (1960).Google Scholar
  49. 49).
    Keier, N. P., Troitskaya, M. G., Rukhadze, E. G.: Catalytic Activity of Chelate Polymers in the Reaction of Hydrogen Peroxide Decomposition. Kinetika Katal. 3, 691 (1962); C. A. 58, 7413a (1963).Google Scholar
  50. 50).
    Hercules, David M.: Electron Spectroscopy. Anal. Chem. 42, 20 A (1970).Google Scholar
  51. 51).
    Topchiev, A. V., Geiderikh, M. A., Davydov, B. E., Kargin, V. A., Krentsel, B. A., Kustanovich, I. M., Polak, L. S.: Preparation of Polymeric Materials with Semiconductor Properties Based on Acrylonitrile. Dokl. Akad. Nauk SSSR 128, 312 (1959); C. A. 54, 6223h (1960).Google Scholar
  52. 52).
    Berlin, A. A., Blyumenfeld, L. A., Semenov, N. N.: Catalytic Properties of some Macromolecular Structures. Izv. Akad. Nauk SSSR, Ser. Khim. 1959, 1689. C. A. 54, 8252h (1960).Google Scholar
  53. 53).
    Inoue, H., Kida, Y., Imoto, E.: Vulcanized Anilinblack. Its Electrical Conductivity and Catalysis upon the Decomposition of Hydrogen Peroxide. Bull. Chem. Soc. Japan 39, 551 (1966).Google Scholar
  54. 54).
    Parini, V. P., Kazokova, Z. S., Berlin, A. A.: Polymers with Conjugated Bonds and Heteroatoms in the Conjugated Bond Chain. XIX. Some Properties of Aniline Black. Vysokomolekul Soedin. 3, 1870 (1961). C. A. 56, 14460g (1962).Google Scholar
  55. 55).
    Dokukina, E. S., Golovina, O. A., Sakharov, M. M., Aseeva, R. M.: Catalytic Activity of Organic Semiconductors Obtained by Thermal Dehydrochlorination of Poly(vinylchloride). Kinetika Katal. 7, 660 (1966). C. A. 65, 17755f (1966).Google Scholar
  56. 56).
    Manassen, J., Wallach, J.: Organic Polymers. Correlation between their Structure and Catalytic Activity in Heterogeneous Systems. I. Pyrolyzed Polyacrylonitrile and Polycyanoacetylene. J. Am. Chem. Soc. 87, 2671 (1965).CrossRefGoogle Scholar
  57. 57).
    Higginson, W. C. E.: The Oxidation of Hydrazine in Aqueous Solution. The Chemical Society, London. Special Publication No. 10, p. 95 (1957). (Recent Aspects of the Inorganic Chemistry of Nitrogen.)Google Scholar
  58. 58).
    Willhoft, E. M. A., Robertson, A. J. B.: Mass-Spectrometric Investigation of Di-imide by the Catalytic Decomposition of Hydrazine at Low Pressures on Platinum. Chem, Commun. 1967, 385.Google Scholar
  59. 59).
    Boreskov, G. K., Keier, N. P., Rubtsova, L. P., Rukhadze, E. G.: The Catalytic Properties of Chelate (Intramolecular) Polymers. Dokl. SSSR. Phys. Chem. Section 144, 453 (1962). (English Transl.)Google Scholar
  60. 60).
    Keier, N. P., Boreskov, G. K., Rubtsova, L. F., Rukhadze, E. G.: Catalytic Activity of Organic Polymers. III. Regularities of Catalysis on the Chelate Polymers of Different Chemical Composition and Structure. Kinetika Katal. 3, 680 (1962). C. A. 58, 7412g (1963).Google Scholar
  61. 61).
    -Regularities of Catalysis on Chelate Polymers. Proc. Third Intern. Congr. Catalysis, p. 1021. Amsterdam: North Holland Publishing Co.Google Scholar
  62. 62).
    -, Astafiev, I. V.: Catalytic Activity of Organic Polymers. II. Catalytic Proporties of a Polymer Obtained by Dechlorination of Poly(vinylidene Chloride). Kinetika Katal. 3, 364 (1962).Google Scholar
  63. 63).
    Hine, J.: Physical Organic Chemistry (Second Edition), p. 311. New York: McGraw-Hill Book Company Inc. 1962.Google Scholar
  64. 64).
    Sachtler, W. M. H., Fahrenfort, J.: The Catalytic Decomposition of Formic Acid Vapor on Metals. Proc. Second. Intern. Congr. Catalysis. Technip. Paris 1961, p. 831.Google Scholar
  65. 65).
    Walling, Ch.: Free Radicals in Solution, p. 273 and 288. New York: John Wiley and Sons Inc. 1957.Google Scholar
  66. 66).
    Beckwith, A. L. S., Norman, R. O. C.: Electron Spin Resonance Studies. Part XX. The Generation of Organic Radicals by the One Electron Reduction of Aliphatic Halogeno-Compounds in Aqueous Solution. J. Chem. Soc. A 1969, 400.Google Scholar
  67. 67).
    Hanke, W.: Katalyse an Phthalocyaninen. I. AmeisensÄuredampfzerfall an Metall-Phthalocyaninen. Z. Anorg. Allgem. Chem. 343, 121 (1966).CrossRefGoogle Scholar
  68. 68).
    -: Katalyse an Phthalocyaninen. II, AmeisensÄuredampfzerfall an polymeren Kupfer-Phthalocyanin und die Bedeutung des elektronischen Faktors. Z. Anorg, Allgem. Chem. 347, 67 (1967).CrossRefGoogle Scholar
  69. 69).
    -: Katalyse an Phthalocyaninen IV. Mangan-Formiat-Phthalocyanin und der AmeisensÄuredampfzerfall an Mangan Phthalocyanin. Z. Anorg. Allgem. Chem. 355, 160 (1967).CrossRefGoogle Scholar
  70. 70).
    -, Gutschick, D.: Katalyse und Phthalocyaninen V. über ein Zinkphthalocyanin-AmeisensÄure-Addukt und zur Wechselwirkung von Metallphthalocyaninen mit AmeisensÄure. Z. Anorg. Allgem. Chem. 366, 201 (1969).CrossRefGoogle Scholar
  71. 71).
    Rosswurm, H., Haevecker, R., Doiwa, A.: Katalyse an organischen Halbleitern I. AmeisensÄuredampfzerfall an Phthalocyaninen. Z. Anorg. Allgem. Chem. 350, 1 (1967).CrossRefGoogle Scholar
  72. 72).
    Tanaka, S., Onishi, T., Tamaru, K.: Decomposition of Formic Acid over Metal Phtahlocyanines. Bull. Chem. Soc. Japan 41, 2557 (1968).Google Scholar
  73. 73).
    Roginskii, S. Z., Berlin, A. A., Kutseva, L. N., Aseeva, R. M., Cherkashina, L. G., Sherle, A. I., Matseeva, N. G.: Catalytic Properties of Organic Polymers with a Conjugated Bond System. The Formation of Hydroperoxides by Oxidation of Alkylaromatic Hydrocarbons and Cychlohexane. Dokl. SSSR, Chemistry Section (English Transl.) 148, 35 (1963) (1963).Google Scholar
  74. 74).
    Nesmeyanov, A. N., Rubinstein, A. M., Dulov, A. A., Slinkin, A. A., Rubinskaya, M. I., Slonimskii, G. L.: Catalytic Properties of Polymers Prepared from Methyl-Chlorovinyl Ketone. Dokl. Akad. Nauk. SSSR 135, 609 (1960). C. A. 55, 15338a (1961).Google Scholar
  75. 75).
    Taylor, William F.: Catalysis in Liquid-Phase Autoxidation. I. Effect of Polymeric Surfaces. J. Catalysis 16, 20 (1970).CrossRefGoogle Scholar
  76. 76).
    Hock, H., Kropf, H.: Autoxidation von Kohlenwasserstoffen XXVII. Phthalocyanine als Katalysatoren für die Autoxydation von Cumol und sonstigen Benzolkohlenwasserstoffen. J. Prakt. Chem. 9, 173 (1959).CrossRefGoogle Scholar
  77. 77).
    Kropf, H.: Katalyse durch Phthalocyanine. I. Kinetik und Mechanismus der Autoxydation von Cumol in Gegenwart von Phthalocyaninen. Ann. Chem. 637, 73 (1960).Google Scholar
  78. 78).
    -: Katalyse durch Phthalocyanine. II. Katalyse von Benzolkohlenwasserstoffen durch Kupfer-Phthalocyanine. Ann. Chem. 637, 93 (1960).Google Scholar
  79. 79).
    -Katalyse durch Phthalocyanine. V. Autoxydation von Cumol in Gegenwart von Vanadyl-Phthalocyanin. Tetrahedron Letters 1962, 577.Google Scholar
  80. 80).
    -Hoffmann, Hd.: Autoxydation von Cumol in Gegenwart von substituierten Kupfer-Phthalocyaninen und verwandten Kupfer-Komplexen. Tetrahedron Letters 1967, 659.Google Scholar
  81. 81).
    Minkov, A. I., Keier, N. P.: The Mechanism of Cumene Oxidation over Copper Phthalocyanine. Kinetika Katal. 8, 160 (1967). C. A. 67, 21210s (1967).Google Scholar
  82. 82).
    --, Anufrienko, V. F.: Oxidation of Isopropylbenzene on Copper Phthalocyanine. Kinetika Katal. 8, 387 (1967). C. A. 67, 107899(1967).Google Scholar
  83. 83).
    Kundo, N. N., Keier, N. P.: Catalytic Activity of Organic Copper Complexes in Cysteine Oxidation. Kinetika Katal. 8, 796 (1967). C. A. 68, 30008e (1968).Google Scholar
  84. 84).
    Wolberg, A., Manassen, J.: Electrochemical and Electron Paramagnetic Resonance Studies on Metalloporphyrins and their Electrochemical Oxidation Products. J. Am. Chem. Soc. 92, 2982 (1970).CrossRefGoogle Scholar
  85. 85).
    Falk, J. E.: Porphyrins and Metalloporphyrins. p. 26. Amsterdam: Elsevier 1964.Google Scholar
  86. 86).
    Kamiya, Y.: The Autoxidation of α-Methylstyrene, Catalyzed by Copperphthalocyanine. Tetrahedron Letters 1968, 4965Google Scholar
  87. 87).
    Inoue, H., Kida, Y., Imoto, E.: The Catalytic Action of Binary Metal-Polyphthalocyanine Complexes on the Oxidation of Acetaldehyde Ethylene Acetal. Bull. Chem. Soc. Japan 38, 2214 (1965).Google Scholar
  88. 88).
    ---: Organic Catalysts. III. The Catalytic Action of Copper-Iron Polyphthalocyanine on Oxidation of Acetalhyde Ethylene Acetal. Bull. Chem. Soc. Japan 40, 184 (1967).Google Scholar
  89. 89).
    ---: Organic Catalysts. The Role of the Iron as an Oxidation Catalysts in Copper-Iron Polyphthalocyanine. Bull. Chem. Soc. Japan 41, 684 (1968).Google Scholar
  90. 90).
    ---: Organic Catalysts. V. Specific Catalytic Properties of Copper-Iron Polyphthalocyanine in the Oxidation of Aldehydes. Bull. Chem. Soc. Japan 41, 692 (1968); 41, 692(1968).Google Scholar
  91. 91).
    Keier, N. P., Mamaeva, E. K., Alikina, G. M., Tyuleneva, L. I., Afanaseva, S. M.: Catalytic Activity of the Transition Metal Chelate Salts of Quinaldine Dithioamides on Oxidation of Cumene. Kinetika Katal. 6, 849 (1965).Google Scholar
  92. 92).
    Minkov, A. I., Alikina, F. M., Fridnev, Yu. M., Keier, N. P.: Catalytic Activity of Polychelates in the Liquid-Phase Oxidation for Hydrocarbons. Kinetika Katal. 7, 632 (1966).Google Scholar
  93. 93).
    Universal Oil Products Co.: Oxidative Sweetening of Kerosine with Phthalocyanine Catalysts. U.S. Patent 3, 408, 287 (1968); C.A. 70, 13245d (1969).Google Scholar
  94. 94).
    Allis Chambers Manufg. Co.: Fuel Electrodes Having a Metal Phthalocyanine Catalyst. U.S. Patent 3, 410, 727 (1968); C.A. 70, 33823u (1969).Google Scholar
  95. 95).
    Compagnie FranÇaise de Raffinage (1966): Catalyseurs Organiques a Grande Spécifique et leur Procédé de Fabrication. French Patent 1, 431, 848.Google Scholar
  96. 96).
    Manassen, J., Khalif, Sh.: Organic Polymers. Correlation between their Structure and Catalytic Activity in Heterogeneous Systems. II. Models for Dehydrogenation Catalysts. J. Am. Chem. Soc. 88, 1943 (1966).CrossRefGoogle Scholar
  97. 97).
    -Catalytic Hydrogen Transfer. Israel Patent Apllication 27693 (1966).Google Scholar
  98. 98).
    Berlin, A. A., Ragimov, A. V., Liogonkii, B. I., Belova, G. V.: Synthesis and Study of Polyarylene Quinones. Polymer Sci. (USSR) (English Transl.) 8, 589 (1966).Google Scholar
  99. 99).
    Manassen, J., Khalif, Sh.: Organic Polymers: Correlation between their Structure and Catalytic Activity in Heterogeneous Systems. IV. Oxydative Dehydrogenation. A Comparison between the Catalytic Activity of an Organic Polymer and that of some Molybdate Catalysts. J. Catalysis 13, 290 (1969).CrossRefGoogle Scholar
  100. 100).
    -, Bar Ilan, A.: Metal Complexes of Phthalocyanine and α, Β, λ, δ-Tetraphenyl Prophyrin as Heterogeneous Catalysts in Oxidative Dehydrogenation. Correlation between Catalytic Activity and Redox Potential. J. Catalysis 17, 86 (1970).CrossRefGoogle Scholar
  101. 101).
    Bar Ilan, A., Manassen, J.: Unpublished Results.Google Scholar
  102. 102).
    Jolly, W. L.: The Inorganic Chemistry of Nitrogen, p. 71. New York, Amsterdam: W. A. Benjamin Inc. 1964.Google Scholar
  103. 103).
    Mme Gallard, J., Laederlich, Th., Salle, R., Traynard, Ph.: Polymeres a Structures Conjuguée. I. Catalyse par les Polymères Conjugées. Bull. Soc. Chim. France 1963, 2204.Google Scholar
  104. 104).
    -Nechtstein, M., Soutif, M., Traynard, Ph.: Polymères à Structure Conjuguée. II. Conclusion entre Propriétés Cataliques et Centres Paramagnétiques dans les Polymères Conjuguées. Bull. Soc. Chim. France 1963, 2209.Google Scholar
  105. 105).
    Gallard-Nechtstein, J., Pècher-Reboul, A., Traynard, Ph.: Polymères à Structure Conjuguée. III. Influence de la Structure sur les Propriétés Cataliques des Polymères Conjugués. Bull. Soc. Chim. France 1967, 960.Google Scholar
  106. 106).
    ---: Heterogeneous Catalysis on Organic Conjugated Polymers. II. Electron Spin Resonance and Structural Factor. J. Catalysis 13, 261 (1969).CrossRefGoogle Scholar
  107. 107).
    Cutlip, M. B., Peters, M. S.: Heterogeneous Catalysis over an Organic Semiconducting Organic and Metallo-Organic Compounds in Heterogeneous Systems Polymer made from Acrylonitrile. Symp. on Recent Advances in Reaction Kinetics and Catalysis, Part. I. Sixtieth Annual Meeting, New York. November 26–30, 1967.Google Scholar
  108. 108).
    Paushkin, Ya. M., Burova, L. M., Voronina, M. A., Vishnyakova, T. D., Sokolinskaya, T. A., Aliev, L. A.: Dehydration and Dehydrogenation of Alcohols, Catalyzed by Ferrocene Polymers. Dokl. Akad. Nauk. SSSR 186, 108 (1969).Google Scholar
  109. 109).
    Fang, F. T.: Heterogeneous Catalysis by Macroreticular Functional Resins. Proc. Third. Internat. Cong. Catalysis, p. 901. Amsterdam: North Holland Publ. Comp. 1965.Google Scholar
  110. 110).
    Manassen, J., Khalif, Sh.: Organic Polymers. Correlation between their Structure and Catalytic Activity in Heterogeneous Systems. III. Acid Type Catalysis, Sulfonated and Phosphonated Polyphenyl. J. Catalysis 7, 110 (1967).CrossRefGoogle Scholar
  111. 111).
    Kallo, D., Preszler, I.: n-Butene Isomerization on Acidic Ion-Exchange Resins. J. Catalysis 12, 1 (1968).CrossRefGoogle Scholar
  112. 112).
    Gates, B. C., Schwab, G.-M.: The Dehydration of Formic Acid Catalyzed by Polystyrene Sulfonic Acid. J. Catalysis 15, 430 (1969).CrossRefGoogle Scholar
  113. 113).
    -, Johanson, L. N.: The Dehydration of Methanol and Ethanol Catalyzed by Polystyrene Sulfonate Resins. J. Catalysis 14, 69 (1969).CrossRefGoogle Scholar
  114. 114).
    Frilette, V. J., Mower, E. M., Rubin, M. K.: Kinetics of Dehydration of Ter-butyl Alcohol Catalyzed by Ion Exchange Resins. J. Catalysis 3, 25 (1964).CrossRefGoogle Scholar
  115. 115).
    Cassidy, H. G., Kun, K. A.: Oxidation-reduction Polymers; Redox Polymers. Interscience, New York (1965).Google Scholar
  116. 116).
    Chelate Polymers Give New Redox Route. Chem. Eng. News, April 2, 1962, p. 48.Google Scholar
  117. 117).
    Allan, G. G., Neogi, A. N.: Macromolecular Organometallic Catalysis. J. Phys. Chem. 73, 2093 (1969).CrossRefGoogle Scholar
  118. 118).
    Mobil Oil: Procédé de Mise en Oeuvre de Reactions Catalysées par und Compléxe Résine-Metal' Belgian Patent 721, 696 (1969).Google Scholar
  119. 119).
    I. C. I.: Verfahren zur Oligomerisation von Olefinen. German Patent 1,937,232 (1970).Google Scholar
  120. 120).
    Manassen, J.: Heterogeneous Hydroformylation of Olefins. Israel Patent Application 30505 (1968).Google Scholar
  121. 121).
    Legzdins, P., Rempel, G. L., Wilkinson, G.: The Protonation of Metal Carboxylates. New Homogeneous Hydrogenation Catalyst. Chem. Commun. 1969, 825.Google Scholar
  122. 122).
    Tyruenkova, O. A.: Hydrogenation of Unsaturated Compounds on Palladium/Polymer Catalysts. Russian J. Phys. Chem. (English Transl.) 43, 1167 (1969).Google Scholar
  123. 123).
    Akabori, S., Sakurai, S., Izumi, Y., Fujii, Y.: Asymmetric Catalyst. Nature 178, 323 (1956).Google Scholar
  124. 124).
    Harada, K., Yoshida, T.: Asymmetric Hydrogenation Using Modified Cellulose-Palladium Catalysts. Naturwissenschaften 57, 131 (1970).CrossRefGoogle Scholar
  125. 125).
    --: Asymmetric Hydrogenation Using Modified Ion Exchange Resin-Palladium Catalysts. Naturwissenschaften 57, 306 (1970).CrossRefGoogle Scholar
  126. 126).
    Izumi, Y., Akabori, S., Fukawa, H., Tatumi, S., Imaida, N., Fukuda, T., Komatu, S.: Asymmetric Hydrogenation with Modified Raney Nickel. Proc. Third Intern. Congr. Catalysis. Volume II, p. 1364. Amsterdam: North Holland Publ. Comp. 1965.Google Scholar
  127. 127).
    -, Tatsumi, S., Imaida, M., Okubo, K.: Asymmetric Hydrogenation of C=O Double Bonds with Modified Raney Nickel. XIII. Modification with Peptides. Bull. Chem. Soc. Japan 43, 556 (1970).Google Scholar
  128. 128).
    Cooper, B. J.: Platinum-Carbon Catalysts with Molecular Sieve Properties. Shape Selectivity in Hydrogenation Catalysis. Platinum Metals Rev. 14, 133 (1970).Google Scholar
  129. 129).
    Welch, R. C. W., Rase, H. F.: Selectivity Characteristics of a Geometrically Designed Heterogeneous Catalyst. A High Melting Copper-Enzyme Model. Ind. Eng. Chem. Fundamentals 8, 389 (1969).CrossRefGoogle Scholar
  130. 130).
    Harrison, D. D., Rase, H. F.: Nylon Platinum Catalysts with Unusual Geometric and Selective Characteristics. Ind. Eng. Chem. Fundamentals 6, 161 (1967).CrossRefGoogle Scholar
  131. 131).
    Mme Nechtstein, J.: L'Oxidation du n-butyl-sulfure Catalysée par un mélange de Charbon Actif et de Phthalocyanine de Cobalt. C. R. Acad. Sci. Paris, Ser. C. 268, 376 (1969).Google Scholar
  132. 132).
    Ichikawa, M., Sudo, M., Soma, M., Onichi, T., Tamara, K.: Catalytic Formation of Hydrocarbons (C1-C5) from Hydrogen and Carbon Monoxide over the Electron Donor-Acceptor Complex Films of Alkalimetals with Transition Metal Phthalocyanines or Graphite. J. Am. Chem. Soc. 91, 1538 (1969).CrossRefGoogle Scholar
  133. 133).
    Lindsey, Alan S.: Polymeric Enzymes and Enzyme Analogs. J. Makromol. Chem. C 3, 1 (1969).Google Scholar
  134. 134).
    Manassen, J.: Catalysis of a Symmetry Restricted Reaction by Transition Metal Complexes. The Importance of the Ligand. J. Catalysis 18, 38 (1970).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  1. 1.Plastics Research LaboratoryThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations