Skip to main content

The mean activity coefficient of polyelectrolytes in aqueous solutions and its related properties

  • Conference paper
  • First Online:
Fortschritte der Hochpolymeren-Forschung

Part of the book series: Advances in Polymer Science ((POLYMER,volume 7/4))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. Ise, N., Okubo, T.: Mean Activity Coefficient of Polyelectrolytes. I. Measurements of Sodium Polyacrylates. J. Phys. Chem. 69, 4102 (1965).

    CAS  Google Scholar 

  2. Harned, H. S.: A treatise on physical chemistry. Taylor, H. S. (Ed.). New York: D. Van Nostrand Co., 1924.

    Google Scholar 

  3. Guggenheim, E. A.: Studies of cells with liquid-liquid junctions. Part II. Thermodynamic significance and relationship to activity coefficients. J. Phys. Chem. 34, 1758 (1930).

    Article  Google Scholar 

  4. Rice, S. A., Nagasawa, M.: Polyelectrolyte solutions, 1st Ed., Chap. 8. New York: Academic Press Inc., 1961.

    Google Scholar 

  5. See, for example: Bates, R. G.: Determination of pH, Theory and Practice, Chap. 3. New York: John Wiley & Sons, Inc., 1964.

    Google Scholar 

  6. See Ref. [5], Chap. 10.

    Google Scholar 

  7. Huizenga, J. R., Grieger, P. F., Wall, F. T.: Electrolytic properties of aqueous solutions of polyacrylic acid and sodium hydroxide. I. Transference experiments using radioactive sodium. J. Am. Chem. Soc. 72, 2636 (1950).

    Article  CAS  Google Scholar 

  8. For example: Harned, H. S., Owen, B. B.: The physical chemistry of electrolytic solutions, 3rd Ed., Chap. 10. New York: Reihold, 1958.

    Google Scholar 

  9. For example: Robinson, R. A., Stokes, R. H.: Electrolyte solutions, 2nd Ed., Chap. 8. London: Butterworths Sci. Publ., 1959.

    Google Scholar 

  10. Ise, N., Okubo, T.: Mean activity coefficient of polyelectrolytes. II. Measurements of sodium salts of polyvinyl alcohols partially acetalized with glyoxylic acid. J. Phys. Chem. 70, 1930 (1966).

    CAS  Google Scholar 

  11. — —: Mean activity coefficient of polyelectrolytes. III. Measurements of hydrochlorides of polyethylenimine and its low molecular weight analogs. J. Phys. Chem., 70, 2400 (1966).

    CAS  Google Scholar 

  12. Ref. [8], Chap. 9.

    Google Scholar 

  13. Ref. [9], Chap. 8.

    Google Scholar 

  14. Ise, N., Okubo, T.: Mean activity coefficient of polyelectrolytes. IV. Isopiestic measurements of sodium polyacrylates. J. Phys. Chem. 71, 1287 (1967).

    Article  CAS  Google Scholar 

  15. — —: Mean activity coefficient of polyelectrolytes. V. Measurements of polyvinyl sulfates of various gegenions. J. Phys. Chem. 71, 1886 (1967).

    Article  CAS  Google Scholar 

  16. Okubo, T., Ise, N., Matsui, F.: Mean activity coefficient of polyelectrolytes in the ternary system water-sodium polyacrylate-sodium chloride. J. Am. Chem. Soc. 89, 3697 (1967).

    Article  CAS  Google Scholar 

  17. Ise, N., Okubo, T.: Mean activity coefficient of polyelectrolytes. VIII. Osmotic and activity coefficients of polystyrenesulfonates of various gegenions. J. Phys. Chem. 72, 1361 (1968).

    Article  CAS  Google Scholar 

  18. — Asai, K.: Mean activity coefficient of polyelectrolytes. IX. Activity coefficients of polyethylenesulfonates of various gegenions. J. Phys. Chem. 72, 1366 (1968).

    Article  CAS  Google Scholar 

  19. — Okubo, T.: Mean activity coefficient of polyelectrolytes. X. Activity coefficients of polyphosphates of various gegenions. J. Phys. Chem. 72, 1370 (1968).

    Article  CAS  Google Scholar 

  20. — —: Studies on aqueous solutions of sodium poly-L-glutamates. Determinations of mean activity coefficient, osmotic coefficient, transference number, and partial molal volume. Macromolecules 2, 401 (1969).

    Article  CAS  Google Scholar 

  21. Okubo, T., Ise, N.: Mean and single-ion activity coefficients and transference data of the sodium salt of a deoxyribonucleic acid in aqueous solution. Macromolecules 2, 407 (1969).

    Article  CAS  Google Scholar 

  22. Asai, K., Takaya, K., Ise, N.: Mean activity coefficient of polyelectrolytes. XI. Activity coefficients of various salts of polyacrylic acid and carboxymethylcellulose. J. Phys. Chem. 73, 4071 (1969).

    Article  CAS  Google Scholar 

  23. Matsui, F., Ise, N., Okubo, T.: Activity coefficient of polyelectrolytes in the ternary system water-sodium polyvinyl sulfate-sodium chloride. Polymer. J. 1, 64 (1970).

    Article  CAS  Google Scholar 

  24. Alexandrowicz, A.: The concentration osmometer. J. Polymer Sci. 40, 113 (1959).

    Article  CAS  Google Scholar 

  25. Chu, P., Marinsky, J. A.: The osmotic properties of polystyrenesulfonates. I. The osmotic coefficients. J. Phys. Chem. 71, 4352 (1967).

    Article  CAS  Google Scholar 

  26. See Footnote 33 of Ref. [21].

    Article  CAS  Google Scholar 

  27. Debye, P., Hückel, E.: Zur Theorie der Elektrolyte. I. Gefrierpunktser-niedrigung und verwandte Erscheinungen. Phys. Z. 24, 185 (1923).

    CAS  Google Scholar 

  28. Frank, H. S., Thompson, P. T.: Fluctuations and the limit of validity of the Debye-Hückel theory. J. Chem. Phys. 31, 1086 (1959).

    Article  CAS  Google Scholar 

  29. — —: In: The structure of electrolytic solutions, Chap. 8. (W. J. Hamer, Ed.). New York: John Wiley and Sons, Inc., 1959.

    Google Scholar 

  30. Ref. [9], Chap. 9.

    Google Scholar 

  31. Desnoyers, J. E., Conway, B. E.: Activity coefficients of electrolytes at intermediate concentrations and the “cube-root” law. J. Phys. Chem. 68, 2305 (1964).

    CAS  Google Scholar 

  32. Wall, F. T., Drennan, J. W.: Gelation of polyacrylic acid by divalent cations. J. Polymer. Sci. 7, 83 (1951).

    Article  CAS  Google Scholar 

  33. Eisenberg, A., Saito, S., Teter, L.: The viscoelastic relaxation mechanism of inorganic polymers, IV. Simultaneous multiple mechanisms. J. Polymer. Sci Part C. 14, 323 (1966).

    Article  Google Scholar 

  34. Guinand, S., Boyer-Kawenoki, P., Dobry, A., Tonnelat, J.: Configuration des macromolécules filiformes ionisées en solution. Compt. Rend. 229, 143 (1949).

    CAS  Google Scholar 

  35. Stacey, K. A.: Light-scattering in physical chemistry, Chap. 6. London: Butterworths Sci. Publ., 1956.

    Google Scholar 

  36. Dolar, D., Leskovšek, H.: The mean activity coefficient of polystyrenesulfonic acid. Makromol. Chem. 118, 60 (1968).

    Article  CAS  Google Scholar 

  37. Lifson, S., Katchalsky, A.: The electrostatic free energy of polyelectrolyte solutions. II. Fully stretched macromolecules. J. Polymer. Sci. 13, 43 (1954).

    Article  CAS  Google Scholar 

  38. Frank, H. S., Evans, M. W.: Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; Partial molal entropy in dilute solutions; Structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507 (1945).

    Article  CAS  Google Scholar 

  39. — Wen, W.-Y.: Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discussion Faraday Soc. 24, 133 (1957).

    Article  Google Scholar 

  40. : Single ion activities and ion-solvent interaction in dilute aqueous solution. J. Phys. Chem. 67, 1554 (1963).

    CAS  Google Scholar 

  41. : Structural influences on activity coefficients in aqueous electrolytes. Z. Physik. Chem. 228, 364 (1965).

    CAS  Google Scholar 

  42. Gurney, R. W.: Ionic processes in solutions, Chap. 16. New York: McGraw-Hill Book Co. Inc., 1953.

    Google Scholar 

  43. Wen, W.-Y., Saito, S., Lee, C.-M.: Activity and osmotic coefficients of four symmetrical tetraalkylammonium fluorides in aqueous solutions at 25°. J. Phys. Chem. 70, 1244 (1966).

    CAS  Google Scholar 

  44. Goldman, I. M., Crisler, R. O.: Intramolecular hydrogen bonding involving π-electrons in phenethyl alcohols. J. Org. Chem. 23, 751 (1958).

    Article  CAS  Google Scholar 

  45. Oki, M., Iwamura, H.: Intramolecular interaction between hydroxyl group and π-electrons. VIII. Energetics of the interaction. Bull. Chem. Soc. Japan 33, 717 (1960).

    CAS  Google Scholar 

  46. Kern, W.: Über heteropolare Molekülkolloide. I. Die Polyacrylsäure, ein Modell des Eiweißes. Z. Physik. Chem. A181, 249 (1938).

    CAS  Google Scholar 

  47. : Über heteropolare Molekülkolloide II. Die Viskosität von Lösungen der Polyacrylsäure und ihrer Salze. Z. Physik. Chem. A 181, 283 (1938).

    CAS  Google Scholar 

  48. Kern, W.: Der osmotische Druck wässeriger Lösungen polyvalenter Säuren und ihrer Salze. Z. Physik. Chem. A184, 197 (1939).

    CAS  Google Scholar 

  49. Wall, F. T., Terayama, H., Techakumpuch, S.: Effect of field intensity and quantity of electricity upon counterion fixation by polyelectrolytes. J. Polymer. Sci 20, 477 (1956).

    Article  CAS  Google Scholar 

  50. — Eitel, M. J.: Counterion association with partially neutralized polyacids in the presence of neutral salt. J. Am. Chem. Soc. 79, 1556 (1957).

    Article  CAS  Google Scholar 

  51. Okubo, T., Nishizaki, Y., Ise, N.: Single-ion activity coefficients of gegenions in sodium polyacrylate. J. Phys. Chem. 69, 3690 (1965).

    CAS  Google Scholar 

  52. Darskus, R. L., Jordan, D. O., Kurucsev, T.: Ion binding from conductance transference measurements in salt-free aqueous polyelectrolyte solutions. Trans. Faraday Soc. 62, 2876 (1966).

    Article  CAS  Google Scholar 

  53. Sugai, S., Nitta, K.: Counterion binding in partially neutralized poly (D-glutamic acid) and poly (DL-glutamic acid). Biopolymers 7, 495 (1969).

    Article  CAS  Google Scholar 

  54. Mock, R. A.: Concerning experimental determination of solute activity in aqueous polyelectrolyte solutions. J. Polymer Sci. 49, 143 (1960).

    Google Scholar 

  55. Ref. [9], Chap. 3. For example:

    Google Scholar 

  56. Ref. [8], Chap. 15 and Ref. [9], Chap. 12.

    Google Scholar 

  57. MacInnes, D. A., Shedlovsky, T.: The determination of the ionization constant of acetic acid, at 25°, from conductance measurements. J. Am. Chem. Soc. 54, 1429 (1932).

    Article  CAS  Google Scholar 

  58. Strauss, U. P., Ross, P. D.: Counterion binding by polyelectrolytes. IV. Membrane equilibrium studies of the binding of univalent cations by long-chain polyphosphates. J. Am. Chem. Soc. 81, 5295 (1959).

    Article  CAS  Google Scholar 

  59. Scatchard, G.: Physical chemistry of protein solutions. I. Derivation of the equations for the osmotic pressure. J. Am. Chem. Soc. 68, 2315 (1946).

    Article  CAS  Google Scholar 

  60. Okubo, T., Ise, N.: Publication in preparation.

    Google Scholar 

  61. — —: The solubilities of naphthalene and biphenyl in aqueous polymer solutions. J. Phys. Chem. 73, 1488 (1969).

    Article  CAS  Google Scholar 

  62. Ref. [5], Chap. 9. See, for example:

    Google Scholar 

  63. Ise, N., Okubo, T.: Concentration dependence of activity of a macromolecular component or species. J. Phys. Chem. 70, 2407 (1966).

    CAS  Google Scholar 

  64. Flory, P. J.: Principles of polymer chemistry, Chap. 12. Ithaca, N. Y.: Cornell University Press 1953.

    Google Scholar 

  65. Tompa, H.: Polymer Solutions, p. 96. London: Butterworth and Co. Ltd. 1956.

    Google Scholar 

  66. Carr, C. W., Johnson, W. F., Kolthoff, I. M.: The use of membrane electrodes in the study of soap solutions. J. Phys. Chem. 51, 636 (1947).

    Article  CAS  Google Scholar 

  67. Nagasawa, M., Fujita, H.: Diffusion of a polyelectrolyte in aqueous solution in the absence of added salt. J. Am. Chem. Soc. 86, 3005 (1964).

    Article  CAS  Google Scholar 

  68. — Ozawa, S., Kimura, K., Kagawa, I.: Ionic conductance of polyelectrolytes in salt-free systems. Mem. Fac. Eng. Nagoya Univ. 8, 50 (1956).

    CAS  Google Scholar 

  69. Botré, C., Crescenzi, V. L., Liquori, A. M., Mole, A.: Concentration gradient and diffusion potential in colloidal electrolyte solutions. Trans. Faraday Soc. 55, 1975 (1959).

    Article  Google Scholar 

  70. For a convenient review of various theories of the liquid junction potential see for example Ref. [5], Chap. 3.

    Google Scholar 

  71. Glasstone, S.: An introduction to electrochemistry, Chap. 6. Princeton: D. van Nostrand Comp. 1942.

    Google Scholar 

  72. Planck, M.: Über die Erregung von Electricität und Wärme in Electrolyten. Ann. Physik 39, 161 (1890).

    Google Scholar 

  73. : Über die Potentialdifferenz zwischen zwei verdünnten Lösungen binärer Electrolyte. Ann. Physik 40, 561 (1890).

    Google Scholar 

  74. Henderson, P.: Zur Thermodynamik der Flüssigkeitsketten. Z. Physik Chem. 59, 118 (1907).

    CAS  Google Scholar 

  75. : Zur Thermodynamik der Flüssigkeitsketten. Z. Physik. Chem. 63, 325 (1908).

    CAS  Google Scholar 

  76. Jordan, D. O., Kurucsev, T., Martin, M. L.: Comparative physical chemical study of isotactic and atactic poly (styrene sulphonic acid) solutions. Part I. Electrochemical measurements using cells with and without liquid junction. Trans. Faraday Soc. 65, 598 (1969).

    Article  CAS  Google Scholar 

  77. Feyman, R.: The character of physical law, p. 158. Cambridge, Mass.: MIT Press, 1965.

    Google Scholar 

  78. Inagaki, H., Teramoto, A.: Das scheinbare spezifische Volumen von fadenmolekularen Polyelectrolyten in Lösung. Makromol. Chem. 47, 185 (1961).

    Article  Google Scholar 

  79. Conway, B. E., Desnoyers, J. E., Smith, A. C.: On the hydration of simple ions and polyions. Phil. Trans. Roy. Soc. (London) 256, 389 (1964).

    CAS  Google Scholar 

  80. Ise, N., Okubo, T.: The partial molal volume of polyelectrolytes. J. Am. Chem. Soc. 90, 4527 (1968).

    Article  CAS  Google Scholar 

  81. Cohn, E. J., Edsall, J. T.: Proteins, amino acids, and peptides, Chap. 7 and 16. New York: Reinhold Publ. Corp. 1943.

    Google Scholar 

  82. Dayhoff, M. O., Perlmann, G. E., MacInnes, D. A.: The partial specific volumes, in aqueous solution, of three proteins. J. Am. Chem. Soc. 74, 2515 (1952).

    Article  CAS  Google Scholar 

  83. Hunter, M. J.: The partial specific molal volume of bovine plasma albumin in the presence of potassium chloride. J. Phys. Chem. 71, 3717 (1967).

    Article  CAS  Google Scholar 

  84. Redlich, O., Meyer, D. M.: The molal volumes of electrolytes. Chem. Rev. 64, 221 (1964).

    Article  CAS  Google Scholar 

  85. Wen, W.-Y., Saito, S.: Apparent and partial molal volumes of five symmetrical tetraalkylammonium bromides in aqueous solutions. J. Phys. Chem. 68, 2639 (1964).

    CAS  Google Scholar 

  86. Mukerjee, P.: On ion-solvent interactions. Part I. Partial molal volumes of ions in aqueous solution. J. Phys. Chem. 65, 740 (1961).

    CAS  Google Scholar 

  87. Masterson, W. L.: Partial molal volumes of hydrocarbons in water solution. J. Chem. Phys. 22, 1830 (1954).

    Article  Google Scholar 

  88. Dorsey, N. E.: Properties of ordinary water-substance. ACS Monograph No. 81. New York: Reinhold Publ. Corp. 1940.

    Google Scholar 

  89. Némethy, G., Scheraga, H. A.: Structure of water and hydrophobic bonding in proteins. I. A model for the thermodynamic properties of liquid water. J. Chem. Phys. 36, 3382 (1962).

    Article  Google Scholar 

  90. See, for example, Ref. [9], Chap. 3.

    Google Scholar 

  91. See, for example, Ref. [9], Appendix 8.9.

    Google Scholar 

  92. Némethy, G., Scheraga, H. A.: The structure of water and hydrophobic bonding in proteins. III. The thermodynamic properties of hydrophobic bonds in proteins. J. Phys. Chem. 66, 1773 (1962).

    Google Scholar 

  93. — Steinberg, I. Z., Scheraga, H. A.: Influence of water structure and of hydrophobic interactions on the strength of side-chain H-bonds in proteins. Biopolymers 1, 43 (1963).

    Article  Google Scholar 

  94. Tanford, C.: Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J. Am. Chem. Soc. 84, 4240 (1962).

    Article  CAS  Google Scholar 

  95. Sakurada, I., Sakaguchi, Y. et al.: Hydrolysis of esters with polymer sulfonic acid. Part I to Part X. Kobunshikagaku 22, 696, 701, 706, 711, 804, 808, (1965); 23, 849, 853 (1966).

    CAS  Google Scholar 

  96. — —et al.: Hydrolysis of polymeric esters with polymeric sulfonic acids. Part I to Part V, Kobunshikagaku 23, 735, 741, 748 (1966); 24, 570, 618 (1967).

    CAS  Google Scholar 

  97. Sakurada, I., Sakaguchi, Y. et al.: Hydrolysis of polymeric esters with long chain alkyl-and alkylbenzene sulfonic acids. Kobunshikagaku 23, 842 (1966).

    Google Scholar 

  98. — —et al.: Acetalization of polyvinyl alcohol with low molecular and high molecular sulfunic acids. Kobunshikagaku 24, 341 (1967).

    CAS  Google Scholar 

  99. — — Ono, T., Ueda, T.: Homogeneous hydrolysis of esters with polymer sulfonic acids. Makromol. Chem. 91, 243 (1966).

    Article  CAS  Google Scholar 

  100. : Some fundamental aspects of polymer reactions. Pure Appl. Chem. 16, 263 (1968).

    CAS  Google Scholar 

  101. Overberger, C. G., Pierre, T. St., Vorchheimer, N., Yaroslavsky, S.: The esterolytic catalysis of poly-4(5)-vinylimidazole and poly-5(6)-vinylbenzimidazole. J. Am. Chem. Soc. 85, 3513 (1963).

    Article  CAS  Google Scholar 

  102. — — — Lee, J., Yaroslavsky, S.: The enhanced esterolytic catalysis of poly-4(5)-vinylimidazole and poly-5(6)-vinylbenzimidazole. J. Am. Chem. Soc. 87, 296 (1965).

    Article  CAS  Google Scholar 

  103. — — Yaroslavsky, S.: Cooperative effects in the esterolytic action of poly-5(6)-vinylbenzimidazole. J. Am. Chem. Soc. 87, 4310 (1965).

    Article  CAS  Google Scholar 

  104. — — Yaroslavsky, C., Yaroslavsky, S.: The activation parameters for polymeric imidazole catalysis. The efficiency of multifunctional catalysis on a polymer chain. J. Am. Chem. Soc. 88, 1184 (1966).

    Article  CAS  Google Scholar 

  105. — Sitaramaiah, R., Pierre, T. St., Yaroslavsky, S.: Selective catalysis of the copolymer of 4(5)-vinyl-imidazole and acrylic acid. J. Am. Chem. Soc. 87, 3270 (1965).

    Article  CAS  Google Scholar 

  106. Ise, N., Matsui, F.: The primary salt effect on rate of reaction between likely charged ionic species by polyelectrolytes. J. Am. Chem. Soc. 90, 4242 (1968).

    Article  CAS  Google Scholar 

  107. LaMer, V. K., Fessenden, R. W.: The chemical kinetics of high valence type electrolytes in dilute aqueous solutions. J. Am. Chem. Soc. 54, 2351 (1932).

    Article  CAS  Google Scholar 

  108. : Chemical kinetics in highly dilute solution. Bromoacetate and thiosulfate ions in the presence of sodium ion at 25°. J. Am. Chem. Soc. 51, 3341 (1929).

    Article  CAS  Google Scholar 

  109. — Kamner, M.: The energies and entropies of activation of the reaction between bromoacetate and thiosulfate ions. J. Am. Chem. Soc. 57, 2662 (1935).

    Article  CAS  Google Scholar 

  110. — —The influence of non-electrolytes upon the kinetics of the reaction between bromoacetate and thiosulfate-ions. J. Am. Chem. Soc. 57, 2669 (1935).

    Article  CAS  Google Scholar 

  111. Brönsted, J. N., Livingston, R.: The velocity of ionic reactions. J. Am. Chem. Soc. 49, 435 (1927).

    Article  Google Scholar 

  112. Olson, A. R., Simonson, T. R.: Rates of ionic reactions in aqueous solutions. J. Chem. Phys. 17, 1167 (1949).

    Article  CAS  Google Scholar 

  113. See, for example: Moore, W. J.: Physical chemistry. 3rd Ed., p. 369. Englewood Cliffs, N. J.: Prentice-Hall, Inc. 1962.

    Google Scholar 

  114. Brönsted, J. N.: Zur Theorie der chemischen Reaktionsgeschwindigkeit. Z. Physik Chem. 102, 169 (1922).

    Google Scholar 

  115. : Zur Theorie der chemischen Reaktionsgeschwindigkeit II. Z. Physik Chem. 115, 337 (1925).

    Google Scholar 

  116. Morawetz, H.: Reaction kinetics in polymer solutions. Svensk Kem. Tridskr. 79, 309 (1967).

    CAS  Google Scholar 

  117. : Macromolecules in solution, Chap. 9. New York: Interscience 1965.

    Google Scholar 

  118. : Catalysis and inhibition in solutions of synthetic polymers and in micellar solutions, p. 347. Advan. Catalysis 20, 341 (1968).

    Article  Google Scholar 

  119. — Vogel, B.: Catalysis of ionic reactions by polyelectrolytes. Reaction of Co(NH3)5Cl2+ and Co(NH3)5Br2+ and Hg2+ in poly (sulfonic acid) solutions. J. Am. Chem. Soc. 91, 563 (1969). For a preliminary communications. see B. Vogel and H. Morawetz, J. Am. Chem. Soc. 90, 1368 (1968).

    Article  CAS  Google Scholar 

  120. Ise, N., Matsuda, Y.: publication in preparation.

    Google Scholar 

  121. See, for example: Steiner, R. F.: The chemical fundations of molecular biology, Chap. 9. New York: D. van Nostrand Comp. Inc. 1965.

    Google Scholar 

  122. Lehman, I. R., Bessman, M. J., Simms, E. S., Kornberge, A.: Enzymic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J. Biol. Chem. 233, 163 (1958).

    CAS  Google Scholar 

  123. Josse, J., Kaiser, A. D., Kornberg, A.: Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest neighbor base sequences in deoxyribonucleic acid. J. Biol. Chem. 238, 864 (1961).

    Google Scholar 

  124. Lehman, I. R.: Enzymic synthesis of deoxyribonucleic acid. Ann. N. Y. Acad. Sci. 81, 745 (1959).

    CAS  Google Scholar 

  125. Ise, N.: Catalysis of polynucleotides in ionic reactions. Nature 225, 66 (1970).

    Article  CAS  Google Scholar 

  126. Kunitake, T., Tanaka, Y., Shinkai, S.: Hydrolysis by imidazole-containing polymer catalysts. Read at the 19th Annual Meeting of the Society of High Polymers, Japan, 1970, May, Tokyo, Preprint p. 147.

    Google Scholar 

  127. Cristol, S. J., Begoon, A.: Mechanismus of elimination reactions. VII. The alkaline dehydrohalogenation of chloro-and bromo-maleate and fumarate. J. Am. Chem. Soc. 74, 5025 (1952).

    Article  CAS  Google Scholar 

  128. Ise, N., Matsuda, Y., Harada, T., Ueda, T.: Catalytic effect of synthetic polyelectrolytes, nucleic acid and their related compounds. Read at the 18th Discussion Meeting of High Polymers, 1969, November, Tokyo, Preprint p. 297.

    Google Scholar 

  129. Kern, W., Herold, W., Scherhag, B.: Polyvinylsulfonsäure als Katalysator hydrolytischer Reactionen. Makromol. Chem. 17, 231 (1956).

    Article  CAS  Google Scholar 

  130. — Scherhag, B.: Über die Hydrolyse von Peptiden und Proteinen mit Polyvinylsulfonsäuren. Makromol. Chem. 28, 209 (1958).

    Article  CAS  Google Scholar 

  131. Whitaker, J. R., Deatherage, F. E.: Hydrolysis of proteins and dipeptides by ion-exchange resin catalysis. J. Am. Chem. Soc. 77, 3360 (1955).

    Article  CAS  Google Scholar 

  132. Lawrence, L., Moore, W. J.: Kinetics of the hydrolysis of simple glycin peptide. J. Am. Chem. Soc. 73, 3973 (1951).

    Article  CAS  Google Scholar 

  133. Painter, T. J.: An attempt to devise an artificial endopolysaccaharase system. J. Chem. Soc. 1962, 3932.

    Google Scholar 

  134. Arcus, C. L., Howard, T. J., South, D. S.: Catalysis of the benzidine rearrangement by polystyrenesulfonic acid. Chem. Ind. (London) 1964, 1756.

    Google Scholar 

  135. Jackson, B. A.: Acceleration of a Canizzaro reaction by a polymeric quaternary hydroxide. Chem. Ind. (London) 1964, 2022.

    Google Scholar 

  136. Morawetz, H., Overberger, C. G., Salamone, J. C., Yaroslavsky, S.: Selective catalytic effects of strongly ionizing polycations on ester hydrolysis. J. Am. Chem. Soc. 90, 651 (1968).

    Article  CAS  Google Scholar 

  137. Kabanov, V. A., Aliev, K. V., Kargina, O. V., Patrikeeva, T. I., Kargin, V. A.: Specific polymerization of vinylpyridinium salts polymerization on macromolecular “matrices”. J. Polymer Sci. Part C. No. 16, 1079 (1967).

    Google Scholar 

  138. : Polymerization of chemically-activated monomers. Pure Appl. Chem. 15, 391 (1967).

    Article  CAS  Google Scholar 

  139. Kargina, O. V., Kabanov, V. A., Kargin, V. A.: Polymerisation de la 4-vinylpiridine sur les “matrices” polyacides. J. Polymer. Sci, Part C. No. 22, 339 (1968).

    Google Scholar 

  140. — Ulyanova, M. V., Kabanov, V. A., Kargin, V. A.: To the mechanism of polymerization of 4-vinylpyridine on macromolecular “matrices”. Vysokomol. Soedin. A-9, 340 (1967).

    Google Scholar 

  141. Kabanov, V. A., Petrovskaya, V. A., Kargin, V. A.: Kinetics and mechanism of polymerization of 4-vinylpyridine on macromolecules of polyacrylic and poly-L-glutamic acids. Vysokomolekul. Soedin. A-10, 925 (1968).

    Google Scholar 

  142. Bamford, C. H., Shiiki, Z.: Free-radical template polymerization. Polymer. 9, 596 (1968).

    Google Scholar 

  143. Ferguson, J., Shaw, S. A. O.: Further studies on polymerizations in interacting polymer systems. Europ. Polymer J. 4, 611 (1968).

    Article  CAS  Google Scholar 

  144. Schulze, W.: Verdünnungswärme einer Polyelektrolyten in Wasser bei kleinen Konzentrationen. Z. Elektrochem. 58, 165 (1954).

    CAS  Google Scholar 

  145. Škerjanc, J., Dolar, D., Leskovšek, D.: Heats of dilution of polyelectrolyte solutions. I. Polystyrenesulphonic acid and its sodium salt. Z. Physik. Chem. 56, 207 (1967).

    Google Scholar 

  146. — — —: Heats of dilution of polyelectrolyte solutions. II. Zinc polystyrene-sulphonate. Z. Physik. Chem. 56, 218 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag

About this paper

Cite this paper

Ise, N. (1971). The mean activity coefficient of polyelectrolytes in aqueous solutions and its related properties. In: Fortschritte der Hochpolymeren-Forschung. Advances in Polymer Science, vol 7/4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0051039

Download citation

  • DOI: https://doi.org/10.1007/BFb0051039

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-05046-9

  • Online ISBN: 978-3-540-36328-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics