Calorimetric studies of states and transitions in solid high polymers

  • Malcolm Dole
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 2/2)


Glass Transition Cohesive Energy Polyethylene Terephthalate High Polymer Calorimetric Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alford, S., and M. Dole: Specific heat of synthetic high polymers. VI. A study of the glass transition in polyvinyl chloride. J. Am. Chem. Soc. 77, 4774–4777 (1955).CrossRefGoogle Scholar
  2. 2.
    Alfrey, T., G. Goldfinger and H. Mark: The apparent second-order transition point of polystyrene. J. Appl. Phys. 14, 700–705 (1943).CrossRefGoogle Scholar
  3. 3.
    Aranow, R. H., L. Witten and D. H. Andrews: The entropy of fusion of long chain hydrocarbons. J. Phys. Chem. 62, 812–816 (1958).CrossRefGoogle Scholar
  4. 4.
    Bekkedahl, N., and H. Matheson: Heat capacity, entropy and free energy of rubber hydrocarbon. J. Research Natl. Bur. Standards 15, 503–515 (1935).Google Scholar
  5. 5.
    -and R. B. Scott: Specific heat of the synthetic rubber Hycar O. R. from 15‡ to 340‡ K. J. Research Natl. Bur. Standards 29, 87–95 (1942).Google Scholar
  6. 6.
    Billmeyer, F. W.: The lattice energy of crystalline polyethylene. J. Appl. Phys. 28, 1114–1118 (1957).CrossRefGoogle Scholar
  7. 7.
    Boyd, R. H.: Dielectric loss in 66 Nylon (polyhexamethylene adipamide). J. Chem. Phys. 30, 1276–1283 (1959).CrossRefGoogle Scholar
  8. 8.
    Boyer, R. F., and R. S. Spencer: Thermal expansion and second-order transition effects in high polymers. J. Appl. Phys. 15, 398–405 (1944).CrossRefGoogle Scholar
  9. 9.
    Brill, R.: über das Verhalten von Polyamiden beim Erhitzen. J. prakt. Chem. 161, 49–64 (1942).CrossRefGoogle Scholar
  10. 10.
    Bueche, A. M.: Melting temperature and polymer-solvent interaction: Polychlorotrifluoroethylene. J. Am. Chem. Soc. 74, 65–67 (1952).Google Scholar
  11. 11.
    Bunn, C. W.: The melting points of chain polymers. J. Polymer Sci. 16, 323–343 (1955).Google Scholar
  12. 12.
    Butta, E., and A. Charlesby: Dynamic mechanical properties of irradiated polyethylene. J. Polymer Sci. 33, 119–128 (1958).Google Scholar
  13. 13.
    Cannon, G. G.: Molecular configurations of polyamides. Abstracts of Papers. Amer. Chem. Soc. 135th Meeting, Boston, 1959, paper 2E.Google Scholar
  14. 14.
    Chackraburtty, D. M.: Transition temperatures in some polymers by differential thermal analysis. J. Chem. Phys. 26, 427 (1957).CrossRefGoogle Scholar
  15. 15.
    Charlesby, A., and L. Callaghan: Crystal distribution in various polyethylenes. J. Phys. Chem. Solids 4, 227–238 (1958).Google Scholar
  16. 16.
    Collins, R. L.: Crystalline recovery of quenched polyethylene. J. Polymer Sci. 27, 75–82 (1958).Google Scholar
  17. 17.
    Coste, J.: Application de l'analyse thermique différentielle à l'étude des hauts polymères. Ind. Plastiques Modernes, p. 37. Avril 1957.Google Scholar
  18. 18.
    Daniels, F., and R. A. Alberty: Physical chemistry, p. 285 New York: John Wiley and Sons, Inc. 1955.Google Scholar
  19. 19.
    Danusso, F., G. Moraglio and E. Flores: Enthalpy and entropy of fusion of isotactic polypropylene. Atti Accad. Naz. Lincei Rend. 25, 420–527 (1958).Google Scholar
  20. 20.
    Deeley, C. W., D. E. Kline, J. A. Sauer and A. E. Woodward: Effect of pile irradiation on the dynamic mechanical properties of polyethylene. J. Polymer. Sci. 28, 109–120 (1958).Google Scholar
  21. 21.
    -J. A. Sauer and A. E. Woodward: Dynamic mechanical behavior of irradiated polyethylene. J. Appl. Phys. 29, 1415–1421 (1958).CrossRefGoogle Scholar
  22. 22.
    Desorbo, W.: The specific heat of crystalline selenium at low temperatures. J. Chem. Phys. 21, 1144–1148 (1953).Google Scholar
  23. 23.
    -and W. W. Tyler: The specific heat of graphite from 13‡ to 300‡ K. J. Chem. Phys. 21, 1660–1663 (1953).Google Scholar
  24. 24.
    Dole, M.: Effect of radiation on colloidal and high polymeric substances. Report of Symposium IV. Army Chemical Center, Maryland, 1950, p. 120–147Google Scholar
  25. 25.
    -The melting range of semicrystalline polymers and copolymers. J. Polymer Sci. 19, 347–352 (1956).Google Scholar
  26. 26.
    -Thermodynamic properties of high polymers as a function of their pretreatment as determined by specific heat measurements. Kolloid. Z. 165, 40–57 (1959).CrossRefGoogle Scholar
  27. 27.
    -W. P. Hettinger jr., N. Larson, J. A. Wethington and A. E. Worthington: Calorimetry of high polymers. I. Automatic temperature recording and control of adiabatic jackets. Rev. Sci. Instr. 22, 812–817 (1951).Google Scholar
  28. 28.
    ---and J. A. Wethington, jr.: Specific heat of synthetic high polymers. I. A study of polyethylene including a statistical theory of crystallite length. J. Chem. Phys. 20, 781–790 (1952).Google Scholar
  29. 29.
    -and W. H. Howard: Melting behavior of irradiated polyethylene. J. Phys. Chem. 61, 137–139 (1957).CrossRefGoogle Scholar
  30. 30.
    -N. R. Larson, J. A. Wethington, jr., and R. C. Wilhoit: Calorimetry of high polymers. II. Use of a Watt Hour Meter. Rev. Sci. Instr. 22, 818–820 (1951).Google Scholar
  31. 31.
    -and B. Wunderlich: The melting range of semicrystalline copolymers. II. J. Polymer Sci. 24, 139–143 (1957).Google Scholar
  32. 32.
    --Melting points and heats of fusion of polymers and copolymers. Makromol. Chem. 34, 29–49 (1959).CrossRefGoogle Scholar
  33. 33.
    Dworkin, A. S., D. J. Sasmor and E. R. Vanartsdalen: T2 Dependence of the low temperature specific heat of boron nitride. J. Chem. Phys. 21, 954–955 (1953).CrossRefGoogle Scholar
  34. 34.
    Edgar, O. B., and E. Ellery: Structure-property relationships in polyethylene terephthalate co-polyesters. Part. I. Melting points. Part II. Second-order transition temperatures, J. Chem. Soc. (London) 1952, 2633–2643; J. Polymer Sci. 8, 1–22 (1952).Google Scholar
  35. 35.
    -and R. Hill: The p-phenylene linkage in linear high polymers: some structure-property relationships. J. Polymer Sci. 8, 1–22 (1952).Google Scholar
  36. 36.
    Evans, R. D., H. R. Mighton and P. J. Flory: Crystallization in high polymers. V. Dependence of melting temperatures of polyesters and polyamides on composition and molecular weight. J. Am. Chem. Soc. 72, 2018–2028 (1950).Google Scholar
  37. 37.
    Ferry, J. D., and G. S. Parks: Studies on glass. XIII. Glass formation by a hydrocarbon polymer. J. Chem. Phys. 4, 70–75 (1936).CrossRefGoogle Scholar
  38. 38.
    Flory, P. J.: Thermodynamics of crystallization in high polymers. IV. A theory of crystalline states and fusion in polymers, copolymers, and their mixtures with diluents. J. Chem. Phys. 17, 223–240 (1949).Google Scholar
  39. 39.
    Flory, P. J.: Theory of crystallization in copolymers. Trans. Faraday Soc. 51, 848–857 (1955).CrossRefGoogle Scholar
  40. 40.
    -Statistical thermodynamics of semi-flexible chain molecules. Proc. Roy. Soc. (London) A 234, 60–73 (1956).Google Scholar
  41. 41.
    -H. D. Bedon and E. H. Keefer: Melting points and heats of fusion of some polyamides and polyesters. J. Polymer Sci. 28, 151–161 (1958).Google Scholar
  42. 42.
    -and L. Mandelkern: Melting of copolymers. J. Polymer Sci. 21, 345–348 (1956).Google Scholar
  43. 43.
    Fuoss, R. M.: Electrical properties of solids. VI. Dipole rotation in high polymers. J. Am. Chem. Soc. 63, 369–378 (1941). Note: The dielectric data of Fig. 15 were taken from Document No. 1460, Amer. Documentation Inst. Library of Congress, Washington, D. C.Google Scholar
  44. 44.
    Furukawa, G. T., R. E. McCoskey and G. J. King: Calorimetric properties of polytetrafluoroethylene (Teflon) from 0‡ to 365‡ K. J. Research Natl. Bur. Standards 49, 273–278 (1952).Google Scholar
  45. 45.
    ---Thermal properties of some butadiene-styrene copolymers. J. Research Natl. Bur. Standards 50, 357–365 (1953).Google Scholar
  46. 46.
    --and M. L. Reilly: Heat capacity of some butadiene-styrene copolymers from 0‡ to 330‡ K. J. Research Natl. Bur. Standards 55, 127–132 (1955).Google Scholar
  47. 47.
    -and M. L. Reilley: Heat capacity of polyisobutylene from 0‡ to 380‡ K. J. Research Natl. Bur. Standards 56, 285–288 (1956).Google Scholar
  48. 48.
    Garner, W. E., K. Van Bibber and A. M. King: The melting points and heats of crystallization of the normal long-chain hydrocarbons. J. Chem. Soc. (London) 1931, 1533–1541.Google Scholar
  49. 49.
    Gast, T.: Messungen der spezifischen WÄrme verschiedener Kunststoffe in AbhÄngigkeit von der Temperatur. Kunststoffe 43, 15–18 (1953).Google Scholar
  50. 50.
    Gee, G.: The physical properties of polymers in relation to their chemical structure. Proc. Chem. Soc. (London) 1957, 111–118.Google Scholar
  51. 51.
    Gibbs, J. H., and E. A. Dimarzio: Nature of the glass transition and glassy state. J. Chem. Phys. 28, 373–383 (1958).Google Scholar
  52. 52.
    Hammer, C. F., W. W. Brandt and W. L. Peticolas: Long range molecular order in polyethylene. J. Polymer Sci. 24, 291–292 (1957).Google Scholar
  53. 53.
    Hartley, F. D., F. W. Lord and L. B. Morgan: Crystallization phenomena in polymers. III. Effect of melt conditions and the temperature of crystallization on the course of the crystallization in polyethylene terephthalate. Phil. Trans. 247 A, 23–34 (1954).Google Scholar
  54. 54.
    Hellwege, K. H., W. Knappe u. V. Semjonow: QuasistationÄre Messung der spezifischen WÄrme und der WÄrmeleitfÄhigkeit an Kunststoffen. Z. angew. Physik. 11, 285–290 (1959).Google Scholar
  55. 55.
    Hill, R.: Fibres from synthetic polymers, p. 259. London: Elsevier Publishing Co., 1953.Google Scholar
  56. 56.
    Hirai, N., and H. Eyring: Bulk viscosity of liquids. J. Appl. Phys. 29, 810–816 (1958).CrossRefGoogle Scholar
  57. 57.
    --Bulk viscisity of polymeric systems. J. Polymer Sci. 37, 51–70 (1959).Google Scholar
  58. 58.
    Hoffman, J. D.: The specific heat and degree of crystallinity of polychlorotrifluoroethylene. J. Am. Chem. Soc. 74, 1696–1700 (1952).Google Scholar
  59. 59.
    Huggins, M. L.: The entropy of long chain compounds in the gaseous state. J. Chem. Phys. 8, 181–187 (1940).Google Scholar
  60. 60.
    Ke, B.: Characterization of polyolefins by differential thermal analysis. J. Polymer Sci. 42, 15–23 (1960).Google Scholar
  61. 61.
    Keavney, J. J., and E. C. Eberlin: The determination of glass transition temperatures by differential thermal analysis. J. Appl. Polymer Sci. 3, 47–53 (1960).Google Scholar
  62. 62.
    Keller, A., G. R. Lester and L. B. Morgan: Crystallization phenomena in polymers. I. Preliminary investigation of the crystallization characteristics of polyethylene terephthalate. Phil. Trans. 247A, 1–12 (1954).Google Scholar
  63. 63.
    Kline, D. E., J. A. Sauer and A. E. Woodward: Effect of branching on dynamic mechanical properties of polyethylene. J. Polymer Sci. 22, 455–462 (1956).Google Scholar
  64. 64.
    Kolb, H. J., and E. F. Izard: Dilatometric studies of high polymers. I. Second-order transition temperatures. J. Appl. Phys. 20, 564–571 (1949).Google Scholar
  65. 65.
    Land, R., R. E. Richards and I. M. Ward: A nuclear magnetic resonance investigation of polyethylene terephthalate. Trans. Faraday Soc. 55, 225–231 (1959).CrossRefGoogle Scholar
  66. 66.
    Linton, W. H., and H. H. Goodman: Physical properties of high molecular weight acetal resins. J. Appl. Polymer Sci. 1, 179–184 (1959).Google Scholar
  67. 67.
    Mandelkern, L.: The melting of crystalline polymers. Rubber Chem. and Technol. 32, 1392–1451 (1959).Google Scholar
  68. 68.
    -R. R. Garrett and P. J. Flory: Heats of fusion of aliphatic polyesters. J. Am. Chem. Soc. 74, 3949–3951 (1952).Google Scholar
  69. 69.
    -M. Hellmann, D. W. Brown, D. E. Roberts and F. A. Quinn, jr.: The melting transitions of polymethylene. J. Am. Chem. Soc. 75, 4093–4094 (1953).CrossRefGoogle Scholar
  70. 70.
    -F. A. Quinn, jr. and D. E. Roberts: Thermodynamics of crystallization in high polymers; Gutta Percha. J. Am. Chem. Soc. 78, 926–932 (1956).CrossRefGoogle Scholar
  71. 71.
    Mark, H., and A. V. Tobolsky: Physical chemistry of high polymeric sytems, p. 106. New York: Interscience Publishers, Inc. 1950.Google Scholar
  72. 72.
    Marx, P., and M. Dole: Specific heat of synthetic high polymers. V. A study of the order-disorder transition in polytetrafluoroethylene. J. Am. Chem. Soc. 77, 4771–4774 (1955).CrossRefGoogle Scholar
  73. 73.
    -C. W. Smith, A. E. Worthington and M. Dole: Specific heat of synthetic high polymers. IV. Polycaprolactam. J. Phys. Chem. 59, 1015–1019 (1955).CrossRefGoogle Scholar
  74. 74.
    Matthews, J. L., H. S. Peiser and R. B. Richards: The x-ray measurement of the amorphous content of polythene samples. Acta Cryst. 2, 85–90 (1949).CrossRefGoogle Scholar
  75. 75.
    McCall, D. W., and W. P. Slichter: Molecular motion in polyethylene. J. Polymer Sci. 26, 171–186 (1957).Google Scholar
  76. 76.
    Müller, F. H.: Analyse von ZustandsÄnderungen aus kalorischen und mechanischen Untersuchungen des Deformationsvorganges. Kolloid Z. 165, 96–107 (1959).Google Scholar
  77. 77.
    Natta, G.: Progress in the stereospecific polymerization. Die Makromol. Chem. 35, 94–130 (1960).CrossRefGoogle Scholar
  78. 78.
    -F. Danusso u. G. Moraglio: Dilatometrische Eigenschaften und Struktur isomerer Polymeren des Äthylens und von α-Olefins. Angew. Chem. 69, 686 (1957).Google Scholar
  79. 79.
    Nernst, W.: Der Energieinhalt fester Stoffe. Ann. Physik. 36, 395–439 (1911).Google Scholar
  80. 80.
    -u. F. Lindemann: Spezifische WÄrme und Quantentheorie. Z. Elektrochem. 17, 817–827 (1911).Google Scholar
  81. 81.
    Pitzer, K. S.: The vibration frequencies and thermodynamic functions of long chain hydrocarbons. J. Chem. Phys. 8, 711–720 (1940).CrossRefGoogle Scholar
  82. 82.
    Powles, J. G.: Nuclear magnetic resonance absorption in polymethyl methacrylate and polymethyl α-chloroacrylate. J. Polymer Sci. 22, 79–93 (1956).Google Scholar
  83. 83.
    Prigogine, I., and R. Defay: Thermodynamique Chimique, New Ed. Chap. XIX. Liége: Edition Desoer 1950.Google Scholar
  84. 84.
    --Chemical thermodynamics, translated by D. H. Everett, p. 297. London: Longmans Green and Co. (1954a).Google Scholar
  85. 85.
    --See (1954a), p. 200–204 (1954b).Google Scholar
  86. 86.
    Quinn, F. A., jr., and L. Mandelkern: Thermodynamics of crystallization in high polymers: Poly-(ethylene). J. Am. Chem. Soc. 80, 3178–3182 (1958).CrossRefGoogle Scholar
  87. 87.
    -D. E. Roberts and R. N. Work: Volume-temperature relationships for the room temperature transition in teflon. J. Appl. Phys. 22, 1085–1086 (1951).CrossRefGoogle Scholar
  88. 88.
    Raine, H. C., R. B. Richards and H. Ryder: The heat capacity, heat of solution and crystallinity of polythene. Trans. Faraday Soc. 41, 56–64 (1945).CrossRefGoogle Scholar
  89. 89.
    Rands, R. D., jr., W. J. Ferguson and J. L. Prather: Specific heat and increases of entropy and enthalpy of the synthetic rubber GR-S from 0‡ to 330‡ K. J. Research Natl. Bur. Standards 33, 63–70 (1944).Google Scholar
  90. 90.
    Rempel, R. C., H. E. Weaver, R. H. Sands and R. L. Miller: Nuclear magnetic resonance studies of polyethylene. J. Appl. Phys. 28, 1082–1089 (1957).CrossRefGoogle Scholar
  91. 91.
    Roberts, D. E., and L. Mandelkern: Thermodynamics of crystallization in high polymers: Natural rubber. J. Am. Chem. Soc. 77, 781–786 (1955).Google Scholar
  92. 92.
    Ruhemann, M., u. F. Simon: Zur Kenntnis der physikalischen Eigenschaften des Kautschuks. Z. physik. Chem. 138A, 1–20 (1928).Google Scholar
  93. 93.
    Rybnikar, F.: Fusion of polycaproamide 6 and poly(ethylene terephthalate). Chem. Listy 52, 1042–1048 (1958).Google Scholar
  94. 94.
    Schmidt, G. F., u. H. A. Stuart: Gitterstrukturen mit rÄumlichen Wasserstoffbrückensystemen und Gitterumwandlungen bei Polyamiden. Z. Naturforsch. 13a, 222–225 (1958).Google Scholar
  95. 95.
    Slichter, W. P.: The study of high polymers by nuclear magnetic resonance. Advances in Polymer Sci. 1, 35–74 (1958a).Google Scholar
  96. 96.
    -Molecular motion in polyamides. J. Polymer Sci. 35, 77–92 (1958b).Google Scholar
  97. 97.
    -Nuclear resonance studies of motion in polymers. Makromol. Chem. 34, 67–88 (1959).CrossRefGoogle Scholar
  98. 98.
    Smith, C. W., and M. Dole: Specific heat of synthetic high polymers. VII. Polyethylene terephthalate. J. Polymer Sci. 20, 37–56 (1956).Google Scholar
  99. 99.
    Smith, D. C.: Molecular structure of Marlex polymers. Ind. Eng. Chem. 48, 1161–1164 (1956).Google Scholar
  100. 100.
    Smith, P. L., and B. W. A. Ricketson: Unpublished specific heat of poly-ethylene. Privately communicated by W. G. McCrum in 1959.Google Scholar
  101. 101.
    Sochava, I. V.: Specific heat of linear polymers at low temperatures. Doklady Akad. Sci. U.S.S.R. 130, 126–128 (1960).Google Scholar
  102. 102.
    -and O. N. Trapeznikova: Specific heat of chain structures at low temperatures. Doklady Akad. Nauk. U.S.S.R. 113, 784–786 (1957).Google Scholar
  103. 103.
    -and O. D. Trapeznikova: Internal rotation and heat capacity of a few polymers at low temperatures. Vestnik Leningrad Univ., 13, No. 16 Ser. Fiz. i Khim, No. 3, 65–72 (1958).Google Scholar
  104. 104.
    Southard, J. C., and F. G. Brickwedde: Low temperature specific heats. I. An improved calorimeter for use from 14 to 300‡ K. The heat capacity and entropy of naphthalene. J. Am. Chem. Soc. 55, 4378–4384 (1933).Google Scholar
  105. 105.
    Starkweather, H. W., Jr.: Private communication (1960).Google Scholar
  106. 106.
    -and R. H. Boyd: The entropy of melting of some linear polymers. J. Phys. Chem. 64, 410–414 (1960).Google Scholar
  107. 107.
    Stockmayer, W. H., and C. E. Hecht: Heat capacity of chain polymeric crystals. J. Chem. Phys. 21, 1954–1958 (1953).Google Scholar
  108. 108.
    Stow, F. S., jr., and J. H. Elliott: Adiabatic calorimeter for specific heat determinations over the temperature range 25‡ to 300‡ C. Anal. Chem. 20, 250–253 (1948).CrossRefGoogle Scholar
  109. 109.
    Stull, D. R.: An automatic adiabatic low temperature calorimeter. Anal. Chim. Acta. 17, 133–143 (1957).CrossRefGoogle Scholar
  110. 110.
    Tammann, G.: Der Glaszustand. Leipzig: Voss 1933.Google Scholar
  111. 111.
    Tarassov, V. V.: Chain metasilicates and theory of heat capacity. Doklady Acad. Sci. U.S.S.R. 84, 321–324 (1952).Google Scholar
  112. 112.
    -The anisotropy of atomic vibrations and specific heat of layer and chain structures. Doklady Acad. Sci. U.S.S.R. 100, 307–310 (1955).Google Scholar
  113. 113.
    -The heat capacities of sodium tetraborate on the basis of the theory of the specific heat of chain structures. J. Am. Chem. Soc. 80, 5052–5055 (1958).CrossRefGoogle Scholar
  114. 114.
    Temperley, H. N. V.: Residual entropy of linear polymers. J. Research Natl. Bur. Standards 56, 55–66 (1956).Google Scholar
  115. 115.
    Tyler, W., and W. Desorbo: The specific heat of graphite from 13‡ K to 300‡ K. Phys. Rev. 83, 878–879 (1951).CrossRefGoogle Scholar
  116. 116.
    Ueberreiter, K.: über innere und Äu\ere Weichmachung von makromolekularen Stoffen. Z. angew. Chem. 53, 247–250 (1940).Google Scholar
  117. 117.
    -über das thermische Verhalten mikro-und makromolekularer Stoffe und seine Abwandlungen. Kolloid Z. 102, 272–291 (1943).CrossRefGoogle Scholar
  118. 118.
    -and G. Kanig: Second-order transitions and mesh distribution functions of cross-linked polystyrenes. J. Chem. Phys. 18, 399–406 (1950).CrossRefGoogle Scholar
  119. 119.
    -u. H.-J. Orthmann: Spezifische WÄrme, spezifische Volumen, Temperatur-und WÄrmeleitfÄhigkeit einiger disubstituierter Benzole und polycyclischer Systeme. Z. Naturforsch. 5a, 101–108 (1950).Google Scholar
  120. 120.
    -u. E. Otto-Laupenmühlen: Spezifische WÄrme, spezifisches Volumen, Temperatur-und WÄrmeleitfÄhigkeit von Hochpolymeren. Teil II. KettenlÄngenabhÄngigkeit bei fraktionierten Polystyrolen. Z. Naturforsch. 8a, 664–673 (1953).Google Scholar
  121. 121.
    Vonk, C. G.: Relation between density and crystallinity in polyethylene. Preprints of the short communications. International Macromolecule Symposium, Wiesbaden, Germany, 1959. Sec. IB-11.Google Scholar
  122. 122.
    Warfield, R. W., M. C. Petree and P. Donovan: The specific heat of thermosetting polymers. NAVORD Report. U.S. Navy, No. 6255 14. Jan. 1959.Google Scholar
  123. 123.
    West, E. D., and D. C. Ginnings: Adiabatic calorimeter for the range 30–500‡. J. Research Natl. Bur. Standards 60, 309–316 (1958).Google Scholar
  124. 124.
    White, T. R.: Melting behavior of crystalline polymer fibres. Nature (London) 175, 895 (1955).Google Scholar
  125. 125.
    Wilhoit, R. C., and M. Dole: Specific heat of synthetic high polymers. II. Polyhexamethylene adipamide and sebacamide. J. Phys. Chem. 57, 14–21 (1953).CrossRefGoogle Scholar
  126. 126.
    Woodward, A. E., and J. A. Sauer: The dynamic mechanical properties of high polymers at low temperatures. Advances in Polymer Sci. 1, 114–158 (1958).Google Scholar
  127. 127.
    --, C. W. Deeley and D. E. Kline: The dynamic mechanical behavior of some nylons. J. Colloid Sci. 12, 363–377 (1957).CrossRefGoogle Scholar
  128. 128.
    Worthington, A. E., P. C. Marx and M. Dole: Calorimetry of high polymers. III. A new type of adiabatic jacket and calorimeter. Rev. Sci. Instr. 26, 698–702 (1955).CrossRefGoogle Scholar
  129. 129.
    Wunderlich, B.: Theory of cold crystallization of high polymers. J. Chem. Phys. 29, 1395–1404 (1958).CrossRefGoogle Scholar
  130. 130.
    -Study of the change in specific heat of monomeric and polymeric glasses during the glass transition. To be published (1960).Google Scholar
  131. 131.
    -and M. Dole: Specific heat of synthetic high polymers. VIII. Low pressure polyethylene. J. Polymer Sci. 24, 201–213 (1957).Google Scholar
  132. 132.
    --Specific heat of synthetic high polymers. IX. Poly(ethylene sebacate). J. Polymer Sci. 32, 125–130 (1958).Google Scholar
  133. 133.
    Würstlin, F.: Einfriererscheinungen und chemische Konstitution. Die Physik der Hochpolymeren. Edited by H. A. Stuart. Bd. III. pp. 638–672. Berlin-Göttingen-Heidelberg: Springer-Verlag 1955.Google Scholar

Copyright information

© Springer-Verlag 1960

Authors and Affiliations

  • Malcolm Dole
    • 1
  1. 1.Department of ChemistryNorthwestern UniversityEvanston

Personalised recommendations