Advertisement

Membership in constant time and minimum space

  • Andrej Brodnik
  • J. Ian Munro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 855)

Abstract

We investigate the problem of storing a subset of the elements of a bounded universe so that searches can be performed in constant time and the space used is within a constant factor of the minimum required. Initially we focus on the static version of this problem and conclude with an enhancement that permits insertions and deletions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash functions are reliable. In Proceedings 19 th International Colloquium on Automata, Languages and Programming, volume 623 of Lecture Notes in Computer Science, pages 235–246. Springer-Verlag, 1992.Google Scholar
  2. 2.
    M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R.E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. In 29 th IEEE Symposium on Foundations of Computer Science, pages 524–531, 1988.Google Scholar
  3. 3.
    M. Dietzfelbinger and F. Meyer auf der Heide. A new universal class of hash functions and dynamic hashing in real time. In Proceedings 17 th International Colloquium on Automata, Languages and Programming, volume 443 of Lecture Notes in Computer Science, pages 6–19. Springer-Verlag, 1990.Google Scholar
  4. 4.
    P. Elias. Efficient storage retrieval by content and address of static files. Journal of the ACM, 21(2):246–260, April 1974.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    P. Elias and R.A. Flower. The complexity of some simple retrieval problems. Journal of the ACM, 22(3):367–379, July 1975.CrossRefMathSciNetGoogle Scholar
  6. 6.
    P. van Emde Boas. Machine models and simulations. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume A: Algorithms and Complexity, chapter 1, pages 1–66. Elsevier, Amsterdam, Holland, 1990.Google Scholar
  7. 7.
    A. Fiat and M. Naor. Implicit O(1) probe search. SIAM Journal on Computing, 22(1):1–10, 1993.CrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Fiat, M. Naor, J.P. Schmidt, and A. Siegel. Nonoblivious hashing. Journal of the ACM, 39(4):764–782, October 1992.CrossRefMathSciNetGoogle Scholar
  9. 9.
    M.L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case access time. Journal of the ACM, 31(3):538–544, July 1984.CrossRefGoogle Scholar
  10. 10.
    M.L. Fredman and M.E. Saks. The cell probe complexity of dynamic data structures. In 21 st ACM Symposium on Theory of Computing, pages 345–354, Seattle, Washington, 1989.Google Scholar
  11. 11.
    H.N. Gabow and R.E. Tarjan. A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences, 30:209–221, 1985.CrossRefMathSciNetGoogle Scholar
  12. 12.
    T. Hagerup, K. Mehlhorn, and J.I. Munro. Optimal algorithms for generating discrete random variables with changing distributions. In Proceedings 20th International Colloquium on Automata, Languages and Programming, volume 700 of Lecture Notes in Computer Science, pages 253–264. Springer-Verlag, 1993.Google Scholar
  13. 13.
    P.B. Miltersen. The bit probe complexity measure revisited. In Proceedings 10 th Symposium on Theoretical Aspects of Computer Science, volume 665 of Lecture Notes in Computer Science, pages 662–671. Springer-Verlag, 1993.Google Scholar
  14. 14.
    R.E. Tarjan and A.C. Yao. Storing a sparse table. Communications of the ACM, 22(11):606–611, November 1979.CrossRefMathSciNetGoogle Scholar
  15. 15.
    A.C.-C. Yao. Should tables be sorted? Journal of the ACM, 28(3):614–628, July 1981.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Andrej Brodnik
    • 1
  • J. Ian Munro
    • 1
  1. 1.Department of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations