Is game semantics necessary?

  • Andreas Blass
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 832)


We discuss the extent to which game semantics is implicit in the basic concepts of linear logic.

1991 Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Abramsky and R. Jagadeesan, Games and full completeness for multiplicative linear logic, J. Symbolic Logic (to appear).Google Scholar
  2. 2.
    A. Blass, A game semantics for linear logic, Ann. Pure Appl. Logic 56 (1992), 183–220.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    P.-L. Curien, Concrete data structures, sequential algorithms, and linear logic, electronic posting on Types network (1992).Google Scholar
  4. 4.
    M. Dummett, Elements of Intuitionism, Oxford University Press, 1977.Google Scholar
  5. 5.
    D. Gale and F. M. Stewart, Infinite games with perfect information, Ann. Math. Studies 28 (1953), 245–266.MathSciNetGoogle Scholar
  6. 6.
    J.-Y. Girard, Linear logic, Theoret. Comp. Sci. 50 (1987), 1–102.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    J.-Y. Girard. Towards a geometry of interaction, Categories in Computer Science and Logic (J. Gray and A. Scedrov, eds.), Contemp. Math. 92, Amer. Math. Soc., 1989, pp. 69–108.Google Scholar
  8. 8.
    J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types, Cambridge Tracts in Theoretical Computer Science 7, Cambridge University Press, 1989.Google Scholar
  9. 9.
    W. A. Howard, The formulae-as-types notion of construction, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism (J. R. Hindley and J. P. Seldin, eds.), Academic Press, 1980, pp. 479–490.Google Scholar
  10. 10.
    J. M. E. Hyland and C.-H. L. Ong, Fair games and full completeness for multiplicative linear logic without the MIX-rule, preprint (1993).Google Scholar
  11. 11.
    F. Lamarche, Sequentiality, games and linear logic, preprint (1992).Google Scholar
  12. 12.
    P. Lorenzen, Ein dialogisches Konstruklivitätskriterium, Infinitistic Methods, PWN, 1961, pp. 193–200.Google Scholar
  13. 13.
    H. Simmons, Logic and Computation — Taking the Curry-Howard Correspondence Seriously, Lecture notes distributed at the European Summer Meeting of the Association for Symbolic Logic, Keele, England, 1993.Google Scholar
  14. 14.
    A. S. Troelstra and D. van Dalen, Constructivism in Mathematics — An Introduction, Vol.1, North-Holland, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Andreas Blass
    • 1
  1. 1.Mathematics Dept.University of MichiganAnn ArborUSA

Personalised recommendations