Performance evaluation for clustering algorithms in object-oriented database systems

  • Jérôme Darmont
  • Ammar Attoui
  • Michel Gourgand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 978)


It is widely acknowledged that good object clustering is critical to the performance of object-oriented databases. However, object clustering always involves some kind of overhead for the system. The aim of this paper is to propose a modelling methodology in order to evaluate the performances of different clustering policies. This methodology has been used to compare the performances of three clustering algorithms found in the literature (Cactis, CK and ORION) that we considered representative of the current research in the field of object clustering. The actual performance evaluation was performed using simulation. Simulation experiments we performed showed that the Cactis algorithm is better than the ORION algorithm and that the CK algorithm totally outperforms both other algorithms in terms of response time and clustering overhead.


Clustering Computer systems performance evaluation methodology Object-oriented databases Simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.L. Anderson, A.J. Berre, M. Mallison, H.H. Porter III, B. Scheider: The Hyper-Model Benchmark. International Conference on Extending Database Technology, Venise, Italie, March 1990Google Scholar
  2. 2.
    F. Bancilhon, C. Delobel, P. Kanellakis: Building an Object-Oriented Database System: The Story of O2. Morgan Kaufmann Publishers, 1992Google Scholar
  3. 3.
    J. Banerjee, H.-T. Chou, J.F. Garza, W. Kim, D. Woelk, N. Ballou, H.-J. Kim: Data Model Issues for Object-Oriented Applications. ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987Google Scholar
  4. 4.
    A.J. Berre, T.L. Anderson: The HyperModel Benchmark for Evaluating Object-Oriented Databases. In ”Object-Oriented Databases with Applications to CASE, Networks and VLSI CAD”, edited by R. Gupta and E. Horowitz, Prentice Hall Series in Data and Knowledge Base Systems, 1991Google Scholar
  5. 5.
    F. Bullat: Regroupement physique d'objets dans les bases de données. To appear in ISI, Vol. 3, No. 4, September 1995Google Scholar
  6. 6.
    R.G.G. Cattell: An Engineering Database Benchmark. In ”The Benchmark Handbook for Database Transaction Processing Systems”, edited by Jim Gray, Morgan Kaufmann Publishers, 1991Google Scholar
  7. 7.
    S. Chabridon, J.-C. Liao, Y. Ma, L. Gruenwald: Clustering Techniques for Object-Oriented Database Systems. 38th IEEE Computer Society International Conference, San Francisco, February 1993Google Scholar
  8. 8.
    E.E. Chang, R.H. Katz: Exploiting Inheritance and Structure Semantics for Effective Clustering and Buffering in an Object-Oriented DBMS. ACM SIGMOD International Conference on Management of Data, Portland, Oregon, June 1989Google Scholar
  9. 9.
    E.E. Chang, R.H. Katz: Inheritance in computer-aided design databases: semantics and implementation issues. CAD, Vol. 22, No. 8, October 1990Google Scholar
  10. 10.
    J.R. Cheng, A.R. Hurson: Effective clustering of complex objects in object-oriented databases. ACM SIGMOD International Conference on Management of Data, Denver, Colorado, May 1991Google Scholar
  11. 11.
    S. Ford, J. Joseph, D.E. Langworthy, D.F. Lively, G. Pathak, E.R. Perez, R.W. Peterson, D.M. Sparacin, S.M. Thatte, D.L. Wells, S. Agarwala: ZEITGEIST: Database Support for Object-Oriented Programming. 2nd International Workshop on Object-Oriented Database Systems, Bad Münster am Stein-Ebernburg, FRG, September 1988Google Scholar
  12. 12.
    M. Gourgand, P. Kellert: Conception d'un Environnement de Modélisation des Systèmes de Production. 3rd Industrial Engineering International Congress, Tours, France, March 1991Google Scholar
  13. 13.
    M. He, A.R. Hurson, L.L. Miller, D. Sheth: An Efficient Storage Protocol for Distributed Object-Oriented Databases. IEEE Parallel & Distributed Processing, 1993Google Scholar
  14. 14.
    S.E. Hudson, R. King: Cactis: A Self-Adaptive Concurrent Implementation of an Object-Oriented Database Management System. ACM Transactions on Database Systems, Vol. 14, No. 3, September 1989Google Scholar
  15. 15.
    W. Kim, J.F. Garza, N. Ballou, D. Woelk: Architecture of the ORION Next-Generation Database System. IEEE Transactions on Knowledge and Data Engineering, Vol. 2, No. 1, March 1990Google Scholar
  16. 16.
    M.M. Tsangaris, J.F. Naughton: A Stochastic Approach for Clustering in Object Bases. ACM SIGMOD International Conference on Management of Data, Denver, Colorado, May 1991Google Scholar
  17. 17.
    M.M. Tsangaris, J.F. Naughton: On the Performance of Object Clustering Techniques. ACM SIGMOD International Conference on Management of Data, San Diego, California, June 1992Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Jérôme Darmont
    • 1
  • Ammar Attoui
    • 1
  • Michel Gourgand
    • 1
  1. 1.Laboratoire d'Informatique, Complexe scientifique des CézeauxUniversité Blaise Pascal-Clermont-Ferrand IIAubière CedexFrance

Personalised recommendations