Skip to main content

Diagnostic studies of YBa2Cu3O7−δ laser ablation

  • Part I Thin Films and Superconductors
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 389))

Abstract

The use of a variety of diagnostics can offer significant insight into the mechanisms of laser ablation and film growth. It seems clear that under conditions of optimum film growth that significant collisional processes occur both within the laser-desorbed plume, and between the plume and the processing gas. These collisional processes are responsible for the macroscopic characteristics of the plume, including velocity and spatial distributions, the ratio of ions and particles to neutral atoms and molecules, and the incorporation of oxygen into the film. It is also obvious that real-time diagnostics, applicable under conditions relevant to film production, could provide useful process monitors and feedback control for the production of HTSC thin films.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. T. Cheung, H. Sankur, CRC Crit Rev. Sol. St Mat. Sci. 15, 63–109 (1988).

    Article  Google Scholar 

  2. H. Sankur, J. T. Cheung, Appl. Phys. A A47, 271–284 (l988).

    Article  Google Scholar 

  3. D. J. Ehrlich, J. Y. Tsao, Laser Microfabrication (Thin Film Processes and Lithography) (Academic Press, Boston, 1989).

    Google Scholar 

  4. T. Venkatesan, et al., IEEE J. Quantum Electron 25, 2388–93 (1989).

    Article  ADS  Google Scholar 

  5. J. Narayan, N. Biunno, R. Singh, O. W. Holland, O. Auciello, Appl. Phys. Lett. 51, 1845–7 (l987).

    Article  Google Scholar 

  6. C. C. Chang, et al., Appl. Phys. Lett. 53, 517–19 (1988).

    Article  ADS  Google Scholar 

  7. B. Roas, L. Schultz, G. Endres, Appl. Phys. Lett. 53, 557–1559 (1988).

    Article  Google Scholar 

  8. G. Koren, A. Gupta, E. A. Giess, A. Segmuller, R. B. Laibowitz, Appl. Phys. Lett. 54,1054–1056 (1989).

    Article  ADS  Google Scholar 

  9. K. M. Yoo, R. R. Alfano, X. Guo, M. P. Sarachik, L. L. Isaacs, Appl. Phys. Lett. 54, 1278–9 (1989).

    Article  ADS  Google Scholar 

  10. O. Auciello, et al., Appl. Phys. Lett. 53, 72–4 (1988).

    Article  ADS  Google Scholar 

  11. C. H. Chen, M. P. McCann, R. C. Phillips, Appl. Phys. Lett. 53, 2701–3 (1988).

    Article  ADS  Google Scholar 

  12. D. B. Geohegan, D. N. Mashburn, Appl. Phys. Lett. 55, 2345–2347 (1989).

    Article  ADS  Google Scholar 

  13. P. E. Dyer, R. D. Greenough, A. Issa, P. H. Key, Appl. Phys. Lett. 53, 534–6 (1988).

    Article  ADS  Google Scholar 

  14. T. Venkatesan, et al., Appl. Phys. Lett. 53, 1431–3 (1988).

    Article  ADS  Google Scholar 

  15. H.-J. Dietz, S. Becker, Int. J. Mass Spec. Ion Proc. 82, R1–R5 (1988).

    Article  Google Scholar 

  16. C. H. Becker, J. B. Pallix, J. Appl. Phys. 64, 5152 (1988).

    Article  ADS  Google Scholar 

  17. C. H. Chen, T. M. Murphy, R. C. Phillips, Appl. Phys. Lett. 57, 937–9 (1990).

    Article  ADS  Google Scholar 

  18. P. K. Schenck, D. W. Bonnell, J. W. Hastie, J. Vac. Soc. A7, 1745–1749 (1989).

    ADS  Google Scholar 

  19. R. C. Estler, N. S. Nogar, J. Appl. Phys. 69, 1654–9 (1991).

    Article  ADS  Google Scholar 

  20. R. C. Dye, R. E. Muenchausen, N. S. Nogar, Chem. Phys. Lett. in press, (1991).

    Google Scholar 

  21. N. S. Nogar, R. C. Estler, C. M. Miller, Anal. Chem. 57, 2441–4 (1985).

    Article  Google Scholar 

  22. R. E. Muenchausen, et al., Appl. Phys. Lett. 56, 578–80 (1990).

    Article  ADS  Google Scholar 

  23. R. W. Kelly, R. W. Dreyfus, Nucl. Instr. and Meth. B32, 321–348 (1988).

    ADS  Google Scholar 

  24. R. Kelly, J. Chem. Phys. 92, 5047–56 (1990).

    Article  ADS  Google Scholar 

  25. L. Wiedeman, H. Helvajian, in Materials Research Society (MRS, 1990), pp. 217-222.

    Google Scholar 

  26. H. Dupendant, et al., Appl. Surf. Sci. 43, 369–376 (1989).

    Article  ADS  Google Scholar 

  27. R. A. Neifeld, et al., J. Appl. Phys. 69, 1107–9 (1991).

    Article  ADS  Google Scholar 

  28. J. P. Zheng, Z. O. Huang, D. T. Shaw, H. S. Kwok, Appl. Phys. Lett. 54, 280–282 (1989).

    Article  ADS  Google Scholar 

  29. T. J. Geyer, W. A. Weimer, Appl. Spec. 44, 1659–1664 (1990).

    Article  ADS  Google Scholar 

  30. K. Scott, J. M. Huntley, W. A. Phillips, J. Clarke, J. E. Field, Appl. Phys. Lett. 57, 922 (1990).

    Article  ADS  Google Scholar 

  31. R. C. Tolman, The Principles of Statistical Mechanics, Dover, New York, 1979, Chapter VI.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John C. Miller Richard F. Haglund Jr.

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Nogar, N.S., Dye, R.C., Estler, R.C., Foltyn, S.R., Muenchausen, R.E., Wu, X.D. (1991). Diagnostic studies of YBa2Cu3O7−δ laser ablation. In: Miller, J.C., Haglund, R.F. (eds) Laser Ablation Mechanisms and Applications. Lecture Notes in Physics, vol 389. Springer, New York, NY. https://doi.org/10.1007/BFb0048347

Download citation

  • DOI: https://doi.org/10.1007/BFb0048347

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97731-7

  • Online ISBN: 978-0-387-34818-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics