Skip to main content

Protein thiol modification and apoptotic cell death as cGMP-independent nitric oxide (NO) signaling pathways

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 127))

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albina JE, Cui S, Mateo RB, Reichner JS (1993) Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol 150: 5080–5085

    CAS  PubMed  Google Scholar 

  • Althaus FR, Richter C (eds) (1987) ADP-ribosylation of proteins: enzymology and biological significance. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ankarcrona M, Dypbukt JM, Brüne B, Nicotera P (1994) Interleukin-1b-induced nitric oxide production activates apoptosis in pancreatic RINm5F cells. Exp Cell Res 213: 172–177

    Article  CAS  PubMed  Google Scholar 

  • Antonietta de Matteis M, di Girolamo M, Colanzi A, Pallas M, di Tullio G, McDonald LJ, Moss J, Santini G, Bannykh S, Corda D, Luini A (1994) Stimulation of endogenous ADP-ribosylation by brefeldin A. Proc Natl Acad Sci USA 91: 1114–1118

    Google Scholar 

  • Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′,5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74: 3203–3207

    CAS  PubMed  Google Scholar 

  • Bates JN, Baker MT, Guerra R Jr, Harrison DG (1991) Nitric oxide generation from nitroprusside by vascular tissue. Biochem Pharmacol 42: 157–165

    Article  Google Scholar 

  • Beckmann J (1991) The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J Dev Physiol 15: 53–59

    Google Scholar 

  • Bennett BM, McDonald BJ, Nigam R, Simon WC (1994) Biotransformation of organic nitrates and vascular smooth muscle cell function. TIPS 15: 245–249

    CAS  PubMed  Google Scholar 

  • Boyd RS, Donnelly LE, Allport JR, MacDermot J (1993) Sodium nitroprusside promotes NAD+ labelling of a 116-kDa protein in NG108-15 cell homogenates. Biochem Biophys Res Commun 197: 1277–1282

    Article  CAS  PubMed  Google Scholar 

  • Brüne B, Lapetina EG (1989) Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents. J Biol Chem 264: 8455–8458

    PubMed  Google Scholar 

  • Brüne B, Lapetina EG (1990) Properties of a novel nitric oxide-stimulated ADP-ribosyltransferase. Arch Biochem Biophys 279: 286–290

    PubMed  Google Scholar 

  • Brüne B, Ullrich V (1987) Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol 32: 497–504

    PubMed  Google Scholar 

  • Brüne B, Schmidt K-U, Ullrich V (1990) Activation of soluble guanylate cyclase by carbon monoxide and inhibition by superoxide anion. Eur J Biochem 192: 683–688

    PubMed  Google Scholar 

  • Brüne B, Dimmeler S, Lapetina EG (1992) NADPH: a stimulatory cofactor for nitric oxide-induced ADP-ribosylation reaction. Biochem Biophys Res Commun 182: 1166–1171

    PubMed  Google Scholar 

  • Brüne B, Dimmeler S, Molina y Vedia L, Lapetina EG (1994) Nitric oxide:a signal for ADP-ribosylation of proteins. Life Sci 54: 61–70

    Article  PubMed  Google Scholar 

  • Choi DW (1993) Nitric oxide: foe or friend to the injured brain? Proc Natl Acad Sci USA 90: 9741–9743

    CAS  PubMed  Google Scholar 

  • Claiborne AL, Miller H, Parsonage D, Ross RP (1993) Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J 7: 1483–1490

    CAS  PubMed  Google Scholar 

  • Clancy RM, Leszczynska-Piziak J, Abramson SB (1993) Nitric oxide stimulates the ADP-ribosylation of actin in human neutrophils. Biochem Biophys Res Commun 191: 847–852

    Article  CAS  PubMed  Google Scholar 

  • Collins RJ, Harmon BV, Gobe GC, Kerr JFR (1992) Internucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int J Radiat Biol 61: 451–453

    CAS  PubMed  Google Scholar 

  • Corcoran GB, Fix L, Jones DP, Moslen MT, Nicotera P, Oberhammer F, Buttyan R (1994) Apoptosis: molecular control point in toxicity. Toxicol Appl Pharmacol 128: 169–181

    Article  CAS  PubMed  Google Scholar 

  • Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14: 5147–5159

    CAS  PubMed  Google Scholar 

  • Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 13: 2651–2661

    CAS  PubMed  Google Scholar 

  • Delaney CA, Green MHL, Lowe JE, Green IC (1993) Endogenous nitric oxide induced by interleukin-1b in rat islets of Langerhans and HIT-T15 cells causes significant DNA damage as measured by the ‘comet’ assay. FEBS Lett 333: 291–295

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, Brüne B (1991) 1-arginine stimulates an endogenous ADP-ribosyltransferase. Biochem Biophys Res Commun 178: 848–855

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, Brüne B (1992) Characterization of a nitric-oxide-catalysed ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 210: 305–310

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, Brüne B (1993) Nitric oxide preferentially stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase compared to alcohol or lactate dehydrogenase. FEBS Lett 315: 21–24

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, Lottspeich F, Brüne B (1992) Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 267: 16771–16774

    CAS  PubMed  Google Scholar 

  • Dimmeler S, Ankarcrona M, Nicotera P, Brüne B (1993) Exogenous nitric oxide (NO)-generation or IL-1b induced intracellular NO production stimulates inhibitory auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase in RINm5F cells. J Immunol 150: 2964–2971

    CAS  PubMed  Google Scholar 

  • Dimmeler S, Meßmer UK, Tiegs G, Brüne B (1994) Modulation of glyceraldehyde-3-phosphate dehydrogenase in Salmonella abortus equi lipopolysaccharide-treated mice. Eur J Pharmacol 267: 105–112

    CAS  PubMed  Google Scholar 

  • Duman RS, Terwilliger RZ, Nestler EJ (1993) Alterations is nitric oxide stimulated endogenous ADP-ribosylation associated with long-term potentiation in rat hippocampus. J Neurochem 61: 1542–1545

    CAS  PubMed  Google Scholar 

  • Eizirik DL, Sandler S, Palmer JP (1993) Repair of pancreatic b-cells. Diabetes 42: 1383–1391

    CAS  PubMed  Google Scholar 

  • Feelisch M, Te Poel M, Zamora R, Deussen A, Moncada S (1994) Understanding the controversy over the identity of EDRF. Nature 368: 62–65

    Article  CAS  PubMed  Google Scholar 

  • Fehsel K, Jalowy A, Qi S, Burkart V, Hartmann B, Kolb H (1993) Islet cell DNA is a target of inflammatory attack by nitric oxide. Diabetes 42: 496–500

    CAS  PubMed  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite J (1993) Nitric oxide signalling in the nervous system. The Neurosciences 5: 171–180

    CAS  Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intracellular messenger in the brain. Nature 336: 385–388

    Article  CAS  PubMed  Google Scholar 

  • Graven KK, Troxler RF, Kornfeld H, Panchenko MV, Farber HW (1994) Regulation of endothelial cell glyceraldehyde-3-phosphate dehydrogenase expression by hypoxia. J Biol Chem 269: 24446–24453

    CAS  PubMed  Google Scholar 

  • Green LC, Tannenbaum SR, Goldman P (1981) Nitrate synthesis in the germ-free and conventional rat. Science 212: 56–58

    CAS  PubMed  Google Scholar 

  • Heiss LN, Lancaster JR Jr, Corbett JA, Goldman WE (1994) Epithelial autotoxicity of nitric oxide: role in the respiratory cytopathology of pertussis. Proc Natl Acad Sci USA 91: 267–270

    CAS  PubMed  Google Scholar 

  • Henry Y, Lepoivre M, Drapier J-C, Ducrocq C, Boucher JL, Guissani A (1993) EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J 7: 1124–1134

    CAS  PubMed  Google Scholar 

  • Hibbs JB Jr, Taintor RR, Vavrin Z (1987) Macrophage cytotoxicity: role for 1-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235: 473–476

    CAS  PubMed  Google Scholar 

  • Hilz H, Koch R, Fanick W, Klapproth K, Adamietz P (1984) Nonenzymatic ADP-ribosylation of specific mitochondrial polypeptides. Proc Natl Acad Sci USA 81: 3929–3933

    CAS  PubMed  Google Scholar 

  • Ignarro LJ (1990) Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 30: 535–560

    Article  CAS  PubMed  Google Scholar 

  • Jacobson MK, Jacobson EL (eds) (1989) ADP-ribose transfer reactions: mechanisms and biological significance. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Just I, Wollenberg P, Moss J, Aktories K (1994) Cystein-specific ADP-ribosylation of actin. Eur J Biochem 221: 1047–1054

    Article  CAS  PubMed  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257

    CAS  PubMed  Google Scholar 

  • Kitajima I, Kawahara K, Nakajima T, Soejima Y, Matsuyama T, Maruyama I (1994) Nitric oxide-mediated apoptosis in murine mastocytoma. Biochem Biophys Res Commun 204: 244–251

    Article  CAS  PubMed  Google Scholar 

  • Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298: 249–258

    CAS  PubMed  Google Scholar 

  • Kots AY, Skurat AV, Sergienko EA, Bulargina TV, Severin ES (1992) Nitroprusside stimulates the cysteine-specific mono(ADP-ribosylation) of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. FEBS Lett 300: 9–12

    Article  CAS  PubMed  Google Scholar 

  • Kröncke K-D, Brenner H-H, Rodriguez M-L, Etzkorn K, Noack EA, Kolb H, Kolb-Bachofen V (1993) Pancreatic islet cells are highly susceptible towards the cytotoxic effects of chemically generated nitric oxide. Biochim Biophys Acta 1182: 221–229

    PubMed  Google Scholar 

  • Lee HC (1994) Cyclic ADP-ribose: a new member of super family of signalling cyclic nucleotides. Cell Signal 6: 591–600

    Article  CAS  PubMed  Google Scholar 

  • Lincolin TM, Cornwell TL (1993) Intracellular cyclic GMP receptor proteins. FASEB J 7: 328–338

    Google Scholar 

  • Lipton SA, Choi Y-B, Pan Z-H, Lei SZ, Chen H-SV, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364: 626–632

    CAS  PubMed  Google Scholar 

  • Lowenstein CJ, Snyder SH (1992) Nitric oxide, a novel biologic messenger. Cell 70: 705–707

    CAS  PubMed  Google Scholar 

  • Marletta MA (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78: 927–930

    Article  CAS  PubMed  Google Scholar 

  • McDonald B, Reep B, Lapetina EG, Molina y Vedia L (1993) Glyceraldehyde-3-phosphate dehydrogenase is required for the transport of nitric oxide in platelets. Proc Natl Acad Sci USA 90: 11122–11126

    CAS  PubMed  Google Scholar 

  • McDonald LJ, Moss J (1993) Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 90: 6238–6241

    CAS  PubMed  Google Scholar 

  • Meßmer UK, Brüne B (1994) Modulation of inducible nitric oxide synthase in RINm5F cells. Cell Signal 6: 17–24

    PubMed  Google Scholar 

  • Meßmer UK, Ankarcrona M, Nicotera P, Brüne B (1994) p53 expression in nitric oxide-induced apoptosis. FEBS Lett 355: 23–26

    Article  PubMed  Google Scholar 

  • Mitchell HH, Shonle HA, Grindley HS (1916) The origin of the nitrates in the urine. J Biol Chem 24: 461–490

    CAS  Google Scholar 

  • Mohr S, Stamler JS, Brüne B (1994) Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents. FEBS Lett 348: 223–227

    Article  CAS  PubMed  Google Scholar 

  • Molina y Vedia L, McDonald B, Reep B, Brüne B, DiSilvio M, Billiar TR, Lapetina EG (1992) Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 267: 24929–24932

    CAS  PubMed  Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064

    CAS  PubMed  Google Scholar 

  • Nathan C, Xie Q-W (1994a) Nitric oxide synthases: roles, tolls, and controls. Cell 78: 915–918

    Article  CAS  PubMed  Google Scholar 

  • Nathan C, Xie Q-W (1994b) Regulation of biosynthesis of nitric oxide. J Biol Chem 269: 13725–13728

    CAS  PubMed  Google Scholar 

  • Noack E, Murphy M (1991) Vasodilation and oxygen radical scavenging by nitric oxide/EDRF and organic nitrovasodilators. In: Sies H (ed) Oxidative stress; oxidants and antioxidants. Academic, San Diego, pp 445–489

    Google Scholar 

  • Nussler AK, Billiar TR (1993) Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol 54: 171–178

    CAS  PubMed  Google Scholar 

  • Orrenius S, McConkey D, Jones DP, Nicotera P (1988) Ca2+-activated mechanisms in toxicity and programmed cell death. ISI atlas of science: pharmacology, pp 318–324

    Google Scholar 

  • Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from 1-arginine. Nature 333: 664–666

    Article  CAS  PubMed  Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526

    Article  CAS  PubMed  Google Scholar 

  • Pancholi V, Fischetti VA (1993) Glyceraldehyde-3-phosphate dehydrogenase on the surface of group A streptococci is also an ADP-ribosylating enzyme. Proc Natl Acad Sci USA 90: 8154–8158

    CAS  PubMed  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. J Biol Chem 266: 4244–4250

    CAS  PubMed  Google Scholar 

  • Radons J, Heller B, Bürkle A, Hartmann B, Rodriguez M-L, Kröncke K-D, Burkart V, Kolb H (1994) Nitric oxide toxicity in islet cells involves poly(ADP-ribose) polymerase activation and concomitant NAD+ depletion. Biochem Biophys Res Commun 199: 1270–1277

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran V, Seres T, Moriguchi T, Thomas JA, Johnston RB Jr (1994) S-Thiolation of glyceraldehyde-3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes. J Biol Chem 269:25010–25015

    CAS  PubMed  Google Scholar 

  • Reddy D, Lancaster JR Jr, Cornforth DP (1983) Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes. Science 221: 769–770

    CAS  PubMed  Google Scholar 

  • Reinhard M, Halbrügge M, Scheer U, Wiegand C, Jockusch BM, Walter U (1992) The 46/50-kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J 11: 2063–2070

    CAS  PubMed  Google Scholar 

  • Richter C, Frei B (1988) Calcium release from mitochondria induced by prooxidants. Free Radic Biol Med 4: 365–375

    Article  CAS  PubMed  Google Scholar 

  • Sarih M, Souvannavong V, Adam A (1993) Nitric oxide induces macrophage death by apoptosis. Biochem Biophys Res Commun 191: 503–508

    Article  CAS  PubMed  Google Scholar 

  • Schmidt HHHW (1992) NO, CO and OH endogenous soluble guanylyl cyclase-activating factors. FEBS Lett 307: 102–107

    CAS  PubMed  Google Scholar 

  • Schmidt HHHW, Walter U (1994) NO at work. Cell 78: 919–925

    Article  CAS  PubMed  Google Scholar 

  • Schultz K-D, Schultz K, Schultz G (1977) Sodium nitroprusside and other smooth muscle relaxants increase cyclic GMP levels in rat ductus deferens. Nature 265: 750–751

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Nava E, Moncada S (1992) Induction and potential biological relevance of a calcium-independent nitric oxide synthase in the myocardium. Br J Pharmacol 105: 575–580

    CAS  PubMed  Google Scholar 

  • Schuppe-Koistinen I, Moldeus P, Bergman T, Cotgrave IA (1994) S-thiolation of human endothelial cell glyceraldehyde-3-phosphate dehydrogenase after hydrogen peroxide treatment. Eur J Biochem 221: 1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Schwartzman RA, Cidlowski JA (1993) Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 14: 133–151

    Article  CAS  PubMed  Google Scholar 

  • Snyder SH (1992) Nitric oxide: first in a new class of neutrotransmitters? Science 257: 494–496

    CAS  PubMed  Google Scholar 

  • Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78: 931–936

    Article  CAS  PubMed  Google Scholar 

  • Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258: 1898–1902

    CAS  PubMed  Google Scholar 

  • Stuehr DJ, Marletta MA (1985) Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci USA 82: 7738–7742

    CAS  PubMed  Google Scholar 

  • Tannenbaum SR, Fett D, Young VR, Land PD, Bruce WR (1978) Nitrite and nitrate are formed by endogenous synthesis in the human intestine. Science 200: 1487–1489

    CAS  PubMed  Google Scholar 

  • Tao Y, Howlett A, Klein C (1992) Nitric oxide stimulates the ADP-ribosylation of a 41-kDa cytosolic protein in Dictyostelium discoideum. Proc Natl Acad Sci USA 89: 5902–5906

    CAS  PubMed  Google Scholar 

  • Tao Y, Howlett AC, Klein C (1993) Endogenous ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase that is not regulated by nitric oxide in Dictyostelium discoideum. Cell Signal 5: 763–775

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Howlett A, Klein C (1994) Nitric oxide regulation of glyceraldehyde-3-phosphate dehydrogenase activity in Dictyostelium discoideum cells and lysates. Eur J Biochem 224: 447–454

    Article  CAS  PubMed  Google Scholar 

  • Tremblay J, Gerzer R, Hamet P (1988) Cyclic GMP in cell function. Adv Second Messenger Phosphorprotein Res 22: 319–383

    CAS  Google Scholar 

  • Vaidyanathan VV, Sastry PS, Ramasarma T (1993) Inverse relationship of the dehydrogenase and ADP-ribosylation activities in sodium-nitroprusside-treated glyceraldehyde-3-phosphate dehydrogenase is coincidental. Biochim Biophys Acta 1203: 36–44

    CAS  PubMed  Google Scholar 

  • Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon monoxide, a putative neural messenger. Science 259: 381–384

    CAS  PubMed  Google Scholar 

  • Vezzani A, Sparvoli S, Rizzi M, Zinetti M, Fratelli M (1994) Changes in the ADP-ribosylation status of some hippocampal proteins are linked to kindling progression. Neuroreport 5: 1217–1220

    CAS  PubMed  Google Scholar 

  • Waldman SA, Murad F (1987) Cyclic GMP synthesis and function. Pharmacol Rev 39: 163–196

    CAS  PubMed  Google Scholar 

  • Walter U (1989) Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. Rev Physiol Biochem Pharmacol 113: 41–88

    CAS  PubMed  Google Scholar 

  • Williams MB, Li X, Gu X, Jope RS (1992) Modulation of endogenous ADP-ribosylation in rat brain. Brain Res 592: 49–52

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS, Keefer LK (1991) DNA-deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254: 1001–1003

    CAS  PubMed  Google Scholar 

  • Yau K-W (1994) Cyclic nucleotide-gated channels: an expanding new familiy of ion channels. Proc Natl Acad Sci USA 91: 3481–3483

    CAS  PubMed  Google Scholar 

  • Zhang J, Snyder SH (1992) Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phophate dehydrogenase. Proc Natl Acad Sci USA 89: 9382–9385

    CAS  PubMed  Google Scholar 

  • Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263: 687–689

    CAS  PubMed  Google Scholar 

  • Zhuo M, Small SA, Kandel ER, Hawkins RD (1993) Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 260: 1946–1950

    CAS  PubMed  Google Scholar 

  • Zocchi E, Guida L, Franco L, Silvestro L, Guerrini M, Benatti U, de Flora A (1993) Free ADP-ribose in human erythrocytes: pathways of intra-erythrocytic conversion and non-enzymatic binding to membrane proteins. Biochem J 295: 121–130

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Brüne, B., Mohr, S., Messmer, U.K. (1995). Protein thiol modification and apoptotic cell death as cGMP-independent nitric oxide (NO) signaling pathways. In: Reviews of Physiology Biochemistry and Pharmacology, Volume 127. Reviews of Physiology, Biochemistry and Pharmacology, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0048263

Download citation

  • DOI: https://doi.org/10.1007/BFb0048263

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60135-7

  • Online ISBN: 978-3-540-49453-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics