Advertisement

Development of a parallel and distributed integration package — Part I

  • Elise de Donckcr
  • Ajay Gupta
  • Patricia Ealy
  • Kyle Rathbun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 919)

Abstract

We report on the status of a project involving the design, analysis and development of a set of coarse grain parallel and distributed algorithms for multivariate numerical integration. Important issues in parallel and distributed computations are addressed, with emphasis on loosely coupled systems where communication costs are rather high.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Berntsen, T. O. Espelid, and A. Genz. An adaptive algorithm for the approximate calculation of multiple integrals. ACM Trans. Math. Softw. 17:437–451,1991.MathSciNetGoogle Scholar
  2. 2.
    R. Cools and P. Rabinowitz. Monomial cubature rules since Stroud: A compilation. J. Comp. Appl. Math., 43:309–326, 1993.MathSciNetGoogle Scholar
  3. 3.
    E. de Doncker and A. Gupta. Distributed adaptive integration, algorithms and analysis. In Proceedings of Transputers 94, pages 266–277, 1994.Google Scholar
  4. 4.
    E. de Doncker and J. Kapenga. Parallel cubature on loosely coupled systems. In T. O. Espelid and A. C. Genz, editors. Numerical Integration, Recent Developments, Software and Applications, NATO ASI Series C: Mathematical and Physical Sciences, pages 317–327, 1992.Google Scholar
  5. 5.
    G. A. Geist and V. S. Sunderam. Network based concurrent computing on the PVM system. Journal of Concurrency: Practice and Experience, 1992.Google Scholar
  6. 6.
    A. Genz. An adaptive numerical integration algorithm for simplices. In N. A. Sherwani, E. de Doncker, and J. A. Kapenga, editors, Computing in the 90s. Proceedings of the First Great Lakes Computer Science Conference, Lecture Notes in Computer Science Volume 507, pages 279–292. Springer-Verlag, New York, 1991.Google Scholar
  7. 7.
    A.C. Genz and A.A. Malik. An adaptive algorithm for numerical integration over an n-dimensional rectangular region. Journal of Computational and Applied Mathematics, 6:295–302, 1980.CrossRefGoogle Scholar
  8. 8.
    A.C. Genz and A.A. Malik. An imbedded family of multidimensional integration rules. SIAM J. Numer. Anal., 20:580–588, 1983.CrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Gupta and A. Photiou. Priority queues on distributed memory machines. SIGACT News, 24:2–3, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Elise de Donckcr
    • 1
  • Ajay Gupta
    • 1
  • Patricia Ealy
    • 1
  • Kyle Rathbun
    • 1
  1. 1.Department of Computer ScienceWestern Michigan UniversityKalamazooUSA

Personalised recommendations