Skip to main content

Aqueous two-phase systems for biomolecule separation

  • Chapter
  • First Online:
Bioseparation

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 47))

Abstract

Over the past-thirty years, aqueous polymer two-phase technology has evolved, both experimentally and theoretically, into a separation science with many useful applications in biomolecule purification and bioconversion. This paper summarizes the developments in the applications of aqueous two-phase systems to biotechnology. The main topics to be considered are the phase diagram and its characteristics, fundamentals of biomolecule partition, large-scale and multi-stage aqueous two-phase biomolecule purification, and extractive bioconversions. The first topic involves a discussion of the thermodynamics of aqueous polymer two-phase formation and how it is influenced by such factors as polymer molecular weight and concentration, temperature, and salt type and concentration. Next, the theoretical and experimental aspects of biomolecule partition in aqueous two-phase systems will be discussed in light of the factors which influence biomolecule partition: polymer concentration and molecular weight; temperature; salt type and concentration; the addition of charged, hydrophobic and affinity derivatives. Having reviewed the fundamentals of phase diagram formation and biomolecule partition, the next two topics are applications of aqueous two-phase technology. The first set of applications involve the large-scale extraction of proteins using one to three equilibrium stages and multi-stage purifications using countercurrent distribution, liquid-liquid partition chromatography and continuous countercurrent chromatography. The second application, and very promising area for future aqueous two-phase technology, is the extractive bioconversion which permits the simultaneous production and purification of a biomolecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

\(\begin{gathered}m_3 (\alpha _1 (\tfrac{1}{{m_1 }} - 1 + \chi _{03} - \chi _{13} + \chi _{01} ) \hfill \\+ \alpha _2 \phi (\tfrac{1}{{m_2 }} - 1 + \chi _{03} - \chi _{23} + \chi _{02} )) \hfill \\\end{gathered}\)

A1 :

\(m_1 (\alpha _1 (\tfrac{1}{{m_1 }} - 1 + 2\chi _{01} ) + \alpha _2 \phi (\tfrac{1}{{m_2 }} - 1 + \chi _{01} + \chi _{02} - \chi _{12} ))\)

A2 :

\(m_2 (\alpha _2 \phi (\tfrac{1}{{m_2 }} - 1 + 2\chi _{02} ) + \alpha _1 (\tfrac{1}{{m_1 }} - 1 + \chi _{02} + \chi _{01} - \chi _{12} ))\)

A* :

\(A + \frac{{z_b Fg}}{{RT}}\)

b:

m302α 22 φ201α 21 )

b* :

\(b + \frac{{z_b Fh}}{{RT}}\)

ci :

concentration of species i, % (w/w)

d:

density of a phase, g ml−1

F:

Faraday constant

g:

regression constant in Eq. (19)

h:

regression constant in Eq. (19)

Ka :

binding constant for protein-ligand complex

Ki :

w″i/w′i, partition coefficient for species i

KL :

partition coefficient of biomolecule in the presence of polymer bound ligand

KL,o :

partition coefficient of biomolecule in the absence of polymer bound ligand

K3,o :

partition coefficient of biomolecule when δψ=0 or zb=0

K+ :

partition coefficient of a cation

K :

partition coefficient of an anion

k:

Boltzman's constant

L:

ligand concentration, %(w/w)

mi :

molar volume ratio of species i to that of water

M:

molarity, mol l−1

n:

number of independent binding sites on a protein

Ps :

C is /c Dexs , distribution coefficient

R:

gas law constant, (K-atm)/(mol-K)

T:

absolute temperature, K

V:

volume fraction of a phase, %(v/v)

W:

weight fraction of a phase, %(w/w)

wj :

weight fraction of species i, %(w/w)

Y3 :

biomolecule yield, %

z:

lattice coordinate number

zb :

charge of a biomolecule

z+ :

charge of a cation

z :

charge of an anion

αi :

proportionality factor between volume and weight fraction for species i

Βs :

regression constant in Eq. (8)

γ* :

constant in Eq. (16)

δGm :

Gibbs free energy of mixing, J mol−1

δHm :

enthalpy change on mixing, J mol−1

δSm :

entropy change on mixing, J mol-K−1

δwij :

energy change for the formation of a contact between species i and j, J

δψ:

electrostatic potential difference between the phases, Volts

δ* :

constant in Eq. (16)

ε* :

constant in Eq. (17)

Φ:

W″2−W′2/W″1−W′1

χij :

Flory-Huggins interaction parameter between species i and j

ψ:

electrostatic potential, Volts

″:

top phase

′:

bottom phase

DEX:

dextran-rich phase

i:

i-rich phase

1:

PEG in the PEG/dextran/water and PEG/potassium phosphate/water systems; dextran in the ficoll/dextran/water system

2:

dextran in the PEG/dextran/water system; potassium phosphate in the PEG/potassium phosphate/water system; ficoll in the ficoll/dextran/ water system

3:

biomolecule

i:

component i

s:

salt

References

  1. Beijerinck MW (1986) Zentralbl Bakteriol Parasitenkd Infektionskr Abt 22: 627, 698

    Google Scholar 

  2. Beijerinck MW (1910) Kolloid-Z. 7: 16

    Google Scholar 

  3. Dobry A, Boyer-Kawenoki F (1947) J Polym Sci 2: 90

    CAS  Google Scholar 

  4. Craig LC, Craig D (1956) In: Weissberger (ed) Techniques of organic chemistry, vol 4, part 1. Interscience, New York

    Google Scholar 

  5. Albertsson P-å (1985) History of aqueous polymer two-phase systems. In: Walter H, Brooks DE, Fisher D (eds) Partitioning in aqueous two-phase systems. Theory, methods, uses, and applications to biotechnology. Academic, Orlando, p 1

    Google Scholar 

  6. Albertsson P-å (1986) Partition of cell particles and macromolecules, 3rd edn, Wiley, New York

    Google Scholar 

  7. Albertsson P-å (1971) Partition of cell particles and macromolecules, 2nd edn, Wiley, New York

    Google Scholar 

  8. Albertsson P-å (1958) Biochim Biophys Acta 27: 378

    Article  CAS  Google Scholar 

  9. Tjerneld F, Berner S, Cajarville A, Johansson G (1986) Enz Microb Technol 8: 417

    CAS  Google Scholar 

  10. Mattiasson B, Ling TGI (1986) J Chromatogr 376: 235

    CAS  Google Scholar 

  11. Nguyen A-L, Grothe S, Luong JHT (1988) Appl Microbiol Biotechnol 27: 341

    Article  Google Scholar 

  12. Dobry A (1938) J Chim Phys 35:87

    Google Scholar 

  13. Dobry A (1939) J Chim Phys 36: 102

    CAS  Google Scholar 

  14. Tjerneld F (1989) New Polymers for Aqueous Two-Phase Systems. In: Fisher D, Sutherland IA (eds) Separations Using Aqueous Phase Systems. Applications in Cell Biology and Biotechnology. Plenum, New York, p 429

    Google Scholar 

  15. Hsu JT (1990) US Patent 4,980,065

    Google Scholar 

  16. Stewart R, Topp P (1990) A Polyethylene Glycol-Sodium Chloride Multiphase System for Extraction of Acid Hydrolysates. In: Sikdar SK, Bier M, Topp P (eds) Fronteirs in Bioprocessing II, ACS Conference Series II. ACS, Washington, DC

    Google Scholar 

  17. Walter H, Brooks DE, Fisher D (eds) (1985) Partitioning in Aqueous Two-Phase Systems. Theory, Methods, Uses, and Applications to Biotechnology. Academic, Orlando

    Google Scholar 

  18. Fisher D, Sutherland IA (eds) (1989) Separations Using Aqueous Phase Systems. Applications in Cell Biology and Biotechnology. Plenum, New York

    Google Scholar 

  19. Shanbhag VP, Axelsson CG (1975) Eur J Biochem 60:17

    Article  CAS  Google Scholar 

  20. Walter H, Krob EJ, Brooks DE (1976) Biochemistry 15: 2959

    CAS  Google Scholar 

  21. Zaslavsky BYu, Miheeva LM, Rogozhin SV (1979) Biochim Biophys Acta 588: 89

    CAS  Google Scholar 

  22. Zaslavsky BYu, Miheeva LM, Mestechkina NM, Rogozhin SV (1982) J Chromatogr 240: 21

    Article  Google Scholar 

  23. Zaslavsky BYu, Miheeva LM, Mestechkina NM, Rogozhin SV (1982) J Chromatogr 253: 139

    Google Scholar 

  24. Zaslavsky BYu, Mestechkina NM, Rogozhin SV (1983) J Chromatogr 260: 329

    Article  Google Scholar 

  25. Hustedt H, Kroner KH, Stach W, Kula M-R (1978) Biotechnol Bioeng 20: 1989

    Article  CAS  Google Scholar 

  26. Kroner KH, Hustedt H, Kula M-R (1982) Biotechnol Bioeng 24: 1015

    Article  CAS  Google Scholar 

  27. Kroner KH, Hustedt H, Kula M-R (1984) Process Biochem 19: 170

    Google Scholar 

  28. Tjerneld F, Johansson G, Joelsson M (1987) Biotechnol Bioeng 30: 809

    Article  CAS  Google Scholar 

  29. Kroner KH, Schütte H, Stach W, Kula M-R (1982) J Chem Tech Biotechnol 32: 130

    CAS  Google Scholar 

  30. Diamond AD, Hsu JT (1989) Biotechnol Bioeng 34: 1000

    Article  CAS  Google Scholar 

  31. Diamond AD, Hsu JT (1989) Biotechnol Techn 3: 119

    CAS  Google Scholar 

  32. Forciniti D, Hall CK (1991) Fluid Phase Equilib 61: 243

    Article  CAS  Google Scholar 

  33. Lei X, Diamond AD, Hsu JT (1990) J Chem Eng Data 35: 420

    Article  CAS  Google Scholar 

  34. Brooks DE, Sharp KA, Fisher D (1985) Theoretical Aspects of Partitioning. In: Walter H, Brooks DE, Fisher D (eds) Partitioning in Aqueous Two-Phase Systems. Theory, Methods, Uses, and Applications to Biotechnology. Academic, Orlando, p 11

    Google Scholar 

  35. Albertsson P-å, Cajarville A, Brooks DE, Tjerneld F (1987) Biochim Biophys Acta 926: 87

    CAS  Google Scholar 

  36. Diamond AD, Hsu JT (1990) AlChE J 36: 1017

    CAS  Google Scholar 

  37. Flory PJ (1941) J Chem Phys 9: 660

    Article  CAS  Google Scholar 

  38. Huggins ML (1941) J Chem Phys 9: 440

    Article  CAS  Google Scholar 

  39. Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, Ithaca, New York

    Google Scholar 

  40. Zaslavsky BYu, Bagirov TO, Borovskaya AA, Gulaeva ND, Miheeva LH, Mahmudov AU, Rodnikova MN (1989) Polymer 30: 2104

    Article  Google Scholar 

  41. Gustafsson å, Wennerström H (1986) Polymer 27: 1768

    Article  CAS  Google Scholar 

  42. Baskir JN, Hatton TA, Suter UW (1987) Macromolecules 20: 1300

    Article  CAS  Google Scholar 

  43. King RS, Blanch HW, Prausnitz JM (1988) AIChE J 34: 1585

    CAS  Google Scholar 

  44. Kang CH, Sandier SI (1988) Macromolecules 21: 3088

    Article  CAS  Google Scholar 

  45. Cabezas H, Evans JD, Szlag DC (1990) ACS Symp Ser 419: 38

    Google Scholar 

  46. Forciniti D, Hall CK (1990) ACS Symp Ser 419: 53

    Google Scholar 

  47. Diamond AD (1990) Fundamental Studies of Biomolecule Partitioning in Aqueous Polymer Two-Phase Systems. Lehigh University, Pennsylvania

    Google Scholar 

  48. Diamond AD, Hsu JT (1992) AIChE Symp Ser (in press)

    Google Scholar 

  49. Johansson G (1970) Biochim Biophys Acta 221: 387

    CAS  Google Scholar 

  50. Bamberger S, Seaman GVF, Brown JA, Brooks DE (1984) J Colloid Interface Sci 99: 187

    CAS  Google Scholar 

  51. Zaslavsky BYu, Bagirov TO, Borovskaya AA, Gasanova GZ, Gulaeva ND, Levin VYu, Masimov AA, Mahmudov AU, Mestechkina NM, Miheeva LM, Osipov NM, Rogozhin SV (1986) Colloid Polymer Sci 264: 1066

    Article  Google Scholar 

  52. Zaslavsky BYu, Mahmudov AU, Bagirov TO, Borovskaya AA, Gasanova GV, Gulaeva ND, Levin VYu, Mestechkina NM, Miheeva LM, Rodnikova MN (1987) Colloid Polymer Sci 265: 548

    Article  Google Scholar 

  53. Zaslavsky BYu, Miheeva LM, Aleschko-Ozhevskii YuP, Mahmudov AU, Bagirov TO, Garaev ES (1988) J Chromatogr 439: 267

    Article  Google Scholar 

  54. Abrams DS, Prausnitz JM (1975) AIChE J 21: 116

    Article  CAS  Google Scholar 

  55. Scheutjens JMHM, Fleer GJ (1979) J Phys Chem 83: 1619

    Article  CAS  Google Scholar 

  56. Scheutjens JMHM, Fleer GJ (1980) J Phys Chem 84: 178

    Article  CAS  Google Scholar 

  57. Edmond E, Ogston AG (1968) Biochem J 109: 569

    CAS  Google Scholar 

  58. Hill TL (1959) J Chem Phys 30: 93

    CAS  Google Scholar 

  59. Baskir JN, Hatton TA, Suter UW (1989) Biotechnol Bioeng 34: 541

    Article  CAS  Google Scholar 

  60. Abbot NL, Blankschtein D, Hatton TA (1990) Bioseparation 1: 191

    Google Scholar 

  61. Diamond AD, Hsu JT (1990) J Chromatogr 513: 137

    Article  CAS  Google Scholar 

  62. Johansson G, Andersson M (1984) J Chromatogr 303: 39

    Article  CAS  Google Scholar 

  63. Johansson G (1985) Partitioning of Proteins. In: Walter H, Brooks DE, Fisher D (eds) Partitioning in Aqueous Two-Phase Systems. Theory, Methods, Uses, and Applications to Biotechnology. Academic, Orlando, p 161

    Google Scholar 

  64. Johansson G, KopperschlÄger G, Albertsson P-å (1983) Eur J Biochem 131: 589

    Article  CAS  Google Scholar 

  65. Johansson G, Joelsson M, Olde B (1990) Biochim Biophys Acta 1029: 295

    CAS  Google Scholar 

  66. Albertsson P-å, Nyns EJ (1961) Ark Kemi 17: 197

    CAS  Google Scholar 

  67. Albertsson P-å, Sasakawa S, Walter H (1970) Nature 228: 1329

    Article  CAS  Google Scholar 

  68. Johansson G (1971) Affects of Different Ions on the Partition of Proteins in an Aqueous Dextran-Poly(ethylene) Glycol Two-Phase System. Proceedings of the Int'l Solvent Extraction Conference, 1971, The Hague, 2: 928

    CAS  Google Scholar 

  69. Walter H, Sasakawa S, Albertsson P-å (1972) Biochemistry 11: 3880

    Article  CAS  Google Scholar 

  70. Sasakawa S, Walter H (1972) Biochemistry 11: 2760

    Article  CAS  Google Scholar 

  71. Sasakawa S, Walter H (1974) Biochemistry 13: 29

    Article  CAS  Google Scholar 

  72. Gelsema WJ, Deligny CL (1982) Sep Sci Technol 17: 375

    Google Scholar 

  73. Johansson G (1985) J Chromatogr 322: 425

    Article  CAS  Google Scholar 

  74. Davis JT, Rideal EK (1961) Interfacial Phenomena. Academic, London

    Google Scholar 

  75. Reitherman R, Flanagan SD, Barondes SH (1973) Biochim Biophys Acta 297: 193

    CAS  Google Scholar 

  76. Brooks DE, Sharp KA, Bamberger S, Tamblyn CH, Seaman GVF, Walter H (1984) J Colloid Interface Sci 102: 1

    Article  CAS  Google Scholar 

  77. Johansson G (1970) Biochim Biophys Acta 222: 381

    CAS  Google Scholar 

  78. Johansson G, Hartman A, Albertsson P-å (1973) Eur J Biochem 33: 379

    Article  CAS  Google Scholar 

  79. Hughes P, Lowe CR (1988) Enz Microb Technol 10: 115

    CAS  Google Scholar 

  80. Cheng L, Joelsson M, Johansson G (1990) J Chromatogr 523: 119

    Article  CAS  Google Scholar 

  81. Shanbhag VP, Johansson G (1974) Biochem Biophys Res Communications 61: 1141

    CAS  Google Scholar 

  82. Shanbhag VP, Axelsson C-G (1975) Eur J Biochem 60: 17

    Article  CAS  Google Scholar 

  83. Johansson G (1976) Biochem Biophys Acta 451: 517

    CAS  Google Scholar 

  84. Axelsson C-G (1978) Biochim Biophys Acta 533: 34

    CAS  Google Scholar 

  85. Shanbhag VP, Johansson G (1979) Eur J Biochem 93: 363

    Article  CAS  Google Scholar 

  86. Johansson G, Shanbhag VP (1984) J Chromatogr 284: 63

    Article  CAS  Google Scholar 

  87. Johansson G, Tjerneld F (1989) J Biotechnol 11: 135

    Article  CAS  Google Scholar 

  88. Menge U, Morr M, Mayr U, Kula M-R (1983) J Appl Biochem 5: 75

    CAS  Google Scholar 

  89. Takerkart G, Segard E, Minsigny M (1974) FEBS Lett 42: 218

    CAS  Google Scholar 

  90. Andrews BA, Head DM, Dunthorne P, Asenjo JA (1990) Biotechnol Techn 4: 49

    Article  CAS  Google Scholar 

  91. Flanagan SD, Barondes SH (1975) J Biol Chem 250: 1484

    CAS  Google Scholar 

  92. Axelsson CG, Shanbhag VP (1976) Eur J Biochem 71:419

    Article  CAS  Google Scholar 

  93. Hubert P, Dellacherie E, Neel J, Baulieu E-E (1976) FEBS Lett 65: 169

    Article  CAS  Google Scholar 

  94. Kula M-R, Johansson G, Buchman AF (1979) Biochem Soc Transact 7: 1

    CAS  Google Scholar 

  95. Cordes A, Kula M-R (1986) J Chromatogr 376: 375

    CAS  Google Scholar 

  96. Erlanson-Albertsson C (1980) FEBS Lett 117: 295

    Article  CAS  Google Scholar 

  97. Pinaev G, Tartakovsky A, Shanbhag VP, Johansson G, Backman L (1982) Mol Cell Biochem 48: 65

    Article  CAS  Google Scholar 

  98. KopperschlÄger G, Johansson G (1982) Anal Biochem 124: 117

    Google Scholar 

  99. Johansson G, KopperschlÄger G, Albertsson P-å (1983) Eur J Biochem 131: 589

    Article  CAS  Google Scholar 

  100. Johansson G, Andersson M, åkerlund H-E (1984) J Chromatogr 298: 483

    Article  CAS  Google Scholar 

  101. KopperschlÄger G, Lorenz G, Usbeck E (1983) J Chromatogr 259: 97

    Article  Google Scholar 

  102. Johansson G, Joelsson M (1985) Biotechnol Bioeng 27: 621

    Article  CAS  Google Scholar 

  103. Johansson G, Joelsson M, åkerlund H-E (1985) J Biotechnol 2: 225

    Article  CAS  Google Scholar 

  104. Johansson G, Joelsson M (1986) Appl Biochem Biotechnol 13: 15

    CAS  Google Scholar 

  105. Tjerneld F, Johansson G, Joelsson M (1987) Biotechnol Bioeng 30: 809

    Article  CAS  Google Scholar 

  106. Johansson G, Joelsson M (1987) J Chromatogr 393: 195

    Article  CAS  Google Scholar 

  107. Johansson G, Joelsson M (1987) J Chromatogr 411: 161

    Article  CAS  Google Scholar 

  108. Johansson G, Joelsson M (1987) J Chromatogr 393: 195

    Article  CAS  Google Scholar 

  109. Birkenmeier G, Usbeck E, KopperschlÄger G (1984) Anal Biochem 136: 265

    Article  Google Scholar 

  110. Birkenmeier G, Tschechoniem B, KopperschlÄger G (1984) FEBS Lett 174: 162

    Article  CAS  Google Scholar 

  111. Kroner HK, Cordes A, Schelper A, Morr M, Bückmann AF, Kula M-R (1982) Affinity Partition Studies with Glucose-6-Phosphate Dehydrogenase in Aqueous Two-Phase Systems in Response to Triazine Dyes. In: Gribnau TCJ, Visser J, Nivard RJE (eds) Affinity Chromatography and Related Techniques. Elsevier, Amsterdam

    Google Scholar 

  112. Johannson G, Joelsson M (1984) J Chromatogr 291: 175

    Google Scholar 

  113. Johansson G, Joelsson M (1985) Enz Microb Technol 7: 629

    CAS  Google Scholar 

  114. Persson LO, Olde B (1988) J Chromatogr 457: 183

    Article  CAS  Google Scholar 

  115. Shiemann J, KopperschlÄger G (1984) Plant Sci Lett 36: 205

    Google Scholar 

  116. Chen J-P, Carlson A (1987) Biochnol Techn 1: 263

    CAS  Google Scholar 

  117. Plunket SD, Arnold FH (1990) Biotechnol Techn 4: 45

    Google Scholar 

  118. Lee C-K, Sandler SI (1990) Biotechnol Bioeng 35: 408

    Article  CAS  Google Scholar 

  119. Wuenschell GE, Naranjs E, Arnold FH (1990) Bioprocess Eng 5: 199

    Article  CAS  Google Scholar 

  120. Birkenmeier G, Vijayalaksmi MA, Stigbrand T, KopperschlÄger G (1991) J Chromatogr 539: 267

    Article  CAS  Google Scholar 

  121. Blanco MTM, Perez JAC, Olde B, Johansson G (1986) J Chromatogr 358: 147

    Google Scholar 

  122. Johansson G (1986) J Chromatogr 368: 309

    Article  CAS  Google Scholar 

  123. Johansson G (1989) Affinity Partition of Enzymes. In: Fisher D, Sutherlans IA (eds) Separations Using Aqueous Phase Systems. Applications in Cell Biology and Biotechnology. Plenum, New York, p 7

    Google Scholar 

  124. Cordes A, Flassdorf J, Kula M-R (1987) Biotechnol Bioeng 30: 514

    Article  CAS  Google Scholar 

  125. Suh S-S, Arnold F (1990) Biotechnol Bioeng 35: 682

    Article  CAS  Google Scholar 

  126. Kroner KH, Hustedt H, Granada S, Kula M-R(1978) Biotechnol Bioeng 20: 1967

    Article  CAS  Google Scholar 

  127. Hustedt H, Kroner KH, Kula M-R (1985) Applications of Phase Partitioning in Biotechnology. In: Walter H, Brooks DE, Fisher D (eds) Partitioning in Aqueous Two-Phase Systems. Theory, Methods, Uses, and Applications to Biotechnology. Academic, Orlando, p 529

    Google Scholar 

  128. Yang J, Shen Z, Wang J (1987) Shengwu Gongcheng Zuebao 3: 273

    CAS  Google Scholar 

  129. Hustedt H, Kroner KH, Schütte H, Kula M-R (1983) Extractive Purification of Intracellular Enzymes. In: Enzyme Technol Rotenburg Ferment Symp, 3rd, 1982, p 135

    Google Scholar 

  130. Albertsson P-å, Andersson B (1981) J Chromatogr 215: 131

    CAS  Google Scholar 

  131. Smeds AL, Enfors SO (1985) Enz Microb Technol 7: 601

    CAS  Google Scholar 

  132. Kroner KH, Schütte H, Stach W, Kula M-R (1982) J Chem Technol Biotechnol 32: 130

    CAS  Google Scholar 

  133. Veide A, Smeds A-L, Enfors SO (1983) Biotechnol Bioeng 25: 1789

    Article  CAS  Google Scholar 

  134. Schwenzer B, KopperschlÄger G (1989) Biochim Biophys Acta 48: 33

    CAS  Google Scholar 

  135. Hustedt H, Kroner KH, Menge U, Kula M-R (1978) Aqueous Two-Phase Systems for Large-Scale Enzyme Isolation Processes. In: Prepr — Eur Congr Biotechnol, 1st, 1978, Part 1, p 48

    Google Scholar 

  136. Delgado C, Tejedor MC, Luque J (1990) J Chromatogr 498: 159

    Article  CAS  Google Scholar 

  137. Hummel W, Schütte H, Kula M-R (1985) Appl Microbiol Biotechnol 21: 7

    Article  CAS  Google Scholar 

  138. Hummel W, Schütte H, Kula M-R (1984) Ann NY Acad Sci 434: 195

    Google Scholar 

  139. Hummel W, Schütte H, Kula M-R (1983) Eur J Appl Microbiol Biotechnol 18: 75

    Article  CAS  Google Scholar 

  140. Schütte H, Kroner KH, Hummel W, Kula M-R (1983) Ann NY Acad Sci 413: 270

    Google Scholar 

  141. Albertsson P-å (1973) Biochemistry 12: 2525

    Article  CAS  Google Scholar 

  142. Veide A, Strandberg L, Enfors SO (1987) Enz Microb Technol 9: 730

    CAS  Google Scholar 

  143. Chen J-P (1989) J Food Sci 54: 1369

    CAS  Google Scholar 

  144. Szlag DC, Guiliano KA (1988) Biotechnol Techn 2: 277

    Article  CAS  Google Scholar 

  145. Craig LC (1960) Partition. In: Alexander P, Black RJ (eds) A Laboratory Manual of Analytical Methods of Protein Chemistry. Pergamon Press, Oxford, vol 1, p 122

    Google Scholar 

  146. Treffry TE, Sharpe PT, Walter H, Brooks DE, (1985) Thin Layer Countercurrent Distribution and Apparatus. In: Walter H, Brooks DE, Fisher D (eds) Partitioning in Aqueous Two-Phase Systems. Theory, Methods, Uses, and Applications to Biotechnology. Academic, Orlando, p 131

    Google Scholar 

  147. Albertsson P-å (1965) Anal Biochem 11: 121

    Article  CAS  Google Scholar 

  148. Albertsson P-å (1970) Science Tools 17: 56

    Google Scholar 

  149. åkerlund H-E (1984) J Biophys Biochem Meth 9: 133

    Google Scholar 

  150. Blomquist G, Albertsson P-å (1972) Biochim Biophys Acta 73: 125

    CAS  Google Scholar 

  151. Treybal RE (1951) In: Liquid Extraction. McGraw-Hill, New York

    Google Scholar 

  152. Hustedt H, Kroner KH, Menge U, Kula M-R (1980) Enz Eng 5: 45

    CAS  Google Scholar 

  153. Kula M-R, Kroner KH, Hustedt H, Schütte H (1981) Ann NY Acad Sci 369: 341

    CAS  Google Scholar 

  154. Martin AIP, Synge RLM (1941) 35: 1358

    Google Scholar 

  155. Morris CJOR (1963) Protides Biol Fluids, Proc Colloq 10: 325

    CAS  Google Scholar 

  156. Müller W (1986) Kontakte (Darmstadt) 3: 3

    Google Scholar 

  157. Müller W, Schuetz H-J, Guerrier-Takada C, Cole PE, Potts R (1979) Nucl Acids Res 7: 2483

    Google Scholar 

  158. Müller W, Kutemeier G (1982) Eur J Biochem 128: 231

    Google Scholar 

  159. Müller W (1985) Partitioning of Nucleic Acids. In: Walter H, Brooks DE, Fisher D (eds) Partitioning in Aqueous Two-Phase Systems. Theory, Methods, Uses, and Applications to Biotechnology. Academic, Orlando, p 227

    Google Scholar 

  160. Müller W (1986) Eur J Biochem 155: 213

    Google Scholar 

  161. Müller W (1989) Liquid-Liquid Partition Chromatography of Biopolymers in Aqueous Two-Phase Systems. In: Fisher D, Sutherlans IA (eds) Separations Using Aqueous Phase Systems. Applications in Cell Biology and Biotechnology. Plenum, New York, p 381

    Google Scholar 

  162. Heubner A, Juchem M, Müller W, Pollow K (1989) Application of Liquid-Liquid Partition Chromatography (LLPC) in the Preparation of Steroid Binding Proteins. In: Fisher D, Sutherlans IA (eds) Separations Using Aqueous Phase Systems. Applications in Cell Biology and Biotechnology. Plenum, New York, p 393

    Google Scholar 

  163. Matsumoto U, Shibusawa Y (1980) J Chromatogr 187: 351

    Article  CAS  Google Scholar 

  164. Matsumoto U, Shibusawa Y (1981) J Chromatogr 206: 17

    Article  CAS  Google Scholar 

  165. Matsumoto U, Shibusawa Y, Tanaka Y (1983) J Chromatogr 268: 375

    Article  CAS  Google Scholar 

  166. Matsumoto U, Ban M, Shibusawa Y (1984) J Chromatogr 285: 69

    Article  CAS  Google Scholar 

  167. Matsumoto U, Shibusawa Y (1986) J Chromatogr 356: 27

    Article  CAS  Google Scholar 

  168. Shibusawa Y, Matsumoto U, Takatori M (1987) J Chromatogr 398: 153

    Article  CAS  Google Scholar 

  169. Ito Y., Weinstein MA, Aoki I, Harada R, Kimura E, Numogaki K (1966) Nature 212: 985

    CAS  Google Scholar 

  170. Sutherland IA, Ito Y (1978) HRC CC J High Resolut Chromatogr Chromatogr Commun 3: 171

    Google Scholar 

  171. Heywood-Waddington D, Sutherland IA, Morris WB, Peters TJ (1984) Biochem J 217: 751

    CAS  Google Scholar 

  172. Flanagan SD, Johansson G, Yost B, Ito Y, Sutherland IA (1984) J Liq Chromatogr 7: 385

    CAS  Google Scholar 

  173. Sandlin JL, Ito Y (1988) J Liq Chromatogr 11: 15

    Google Scholar 

  174. Ito Y, Bowman RL (1973) Science 182: 391

    CAS  Google Scholar 

  175. Ito Y (1987) Sep Sci Tech 22: 1971

    CAS  Google Scholar 

  176. Sutherland IA, Ito Y (1980) Anal Biochem 108: 367

    Article  CAS  Google Scholar 

  177. Ito Y, Bramblett GT, Bhatnagar R, Humberman M, Leive LL, Culliname LM, Groves W (1983) Sep Sci Technol 18: 33

    CAS  Google Scholar 

  178. Leive LL, Culliname LM, Ito Y, Bramblett GT (1984) J Liq Chromatogr 7: 403

    CAS  Google Scholar 

  179. Hsu JT, Chou FE (1991) Protein Separation Using Aqueous Two-Phase Systems in the Eccentric Multi-Layer Coil Planet Centrifuge. In: 7th International Conference on Partitioning in Aqueous Two-Phase Systems. Advances in Separation in Biochemistry, Cell Biology and Biotechnology. New Orleans, Louisiana, number 83

    Google Scholar 

  180. Lee YW, Cook CE, Chen DC, Ray P, Shibusawa Y, Ito Y (1991) Application of High Speed Countercurrent Chromatography/Aqueous twp-Phase Solvent System for the Purification of Recombinant Proteins. In: 7th International Conference on Partitioning in Aqueous Two-Phase Systems. Advances in Separation in Biochemistry, Cell Biology and Biotechnology. New Orleans, Louisiana, number 81

    Google Scholar 

  181. Shibusawa Y, Ito Y, Lee YW (1991) Countercurrent Chromatography of Proteins with Polymer Phase Systems Using Cross-Axis Synchronous Coil Planet Centrifuge. In: 7th International Conference on Partitioning in Aqueous Two-Phase Systems. Advances in Separation in Biochemistry, Cell Biology and Biotechnology. New Orleans, Louisiana, number 82

    Google Scholar 

  182. Andersson E, Hahn-HÄgerdal B (1990) Enz Microb Technol 12: 242

    CAS  Google Scholar 

  183. Lee YH, Chang HN (1989) Biotechnol Lett 1: 23

    Google Scholar 

  184. Wennersten R, Tjerneld F, Larsson M, Mattiasson B (1985) Proc Int Solvent Extraction Conf ISEC Denver, p 506

    Google Scholar 

  185. Kuhlmann W, Halwachs W, Schügerl K (1980) Chem Ing Tech 52: 607 Synopse 821

    Article  CAS  Google Scholar 

  186. Tjerneld F, Persson I, Albertsson P-å, Hahn-HÄgerdal B (1985) Biotechnol Bioeng 27: 1036

    CAS  Google Scholar 

  187. Tjerneld F, Persson I, Albertsson P-å, Hahn-HÄgerdal B (1985) Biotechnol Bioeng 27: 1044

    CAS  Google Scholar 

  188. Tjerneld F, Persson I, Lee JM (1991) Biotechnol Bioeng 37: 876

    Article  CAS  Google Scholar 

  189. Nguyen A-L, Grothe S, Luong JHT (1988) Appl Microbiol Biotechnol 27: 341

    Article  Google Scholar 

  190. Larsson M, Mattiasson B (1988) Biotechnol Bioeng 31: 979

    Article  CAS  Google Scholar 

  191. Larsson M, Arasaratnam V, Mattiasson B (1989) Biotechnol Bioeng 33: 758

    Article  CAS  Google Scholar 

  192. Hayashida K, Kunimoto K, Shiraishi F, Kawakami K, Arai Y (1990) J Ferment Bioeng 69: 240

    CAS  Google Scholar 

  193. Yamazaki Y, Suzuki H (1979) Rep Ferment Res Inst Japan 52: 33

    Google Scholar 

  194. Andersson E, Mattiasson B, Hahn-HÄgerdal B (1984) Enz Microb Technol 6: 301

    Google Scholar 

  195. Kaul R, Mattiasson B (1986) Appl Microbiol Biotechnol 24: 259

    Article  CAS  Google Scholar 

  196. Persson I, Tjerneld F, Hahn-HÄgerdal B (1989) Biotechnol Techn 3: 265

    Article  CAS  Google Scholar 

  197. Andersson E, Hahn-HÄgerdal B (1988) Appl Microbiol Biotechnol 29: 329

    Article  CAS  Google Scholar 

  198. Yong Hee L, Ho Nam C (1990) J Ferment Bioeng 69: 89

    Google Scholar 

  199. Andersson E, Johansson A-C, Hahn-HÄgerdal B (1985) Enz Microb Technol 7: 333

    CAS  Google Scholar 

  200. Kantelinen A, Poutanen K, Linko M, Markkanen P (1987) Ann NY Acad Sci

    Google Scholar 

  201. Kantelinen A, Poutanen K, Linko M, Markkanen P (1987) In: Laskin AI, Mosbach K, Thomas D, Wingard LB Jr (eds) Enzyme Engineering 8. Plenum, New York

    Google Scholar 

  202. Yang LW, Hustedt H, Kula M-R (1988) Biotechnol Appl Biochem 10: 173

    CAS  Google Scholar 

  203. Mattiasson B, Souminen M, Andersson E, HÄggström L, Albertsson P-å, Hahn-HÄgerdal B (1982) In: Chibata I, Fukui S, Wingard LB Jr (eds) Enzyme Engineering 6. Plenum, New York

    Google Scholar 

  204. Puziss M, Hedén C-G (1965) Biotechnol Bioeng 7: 355

    Article  CAS  Google Scholar 

  205. Flygare S (1988) Ph.D. Thesis, Dept of Pure and Appl Biochemistry, Lund University, Sweden

    Google Scholar 

  206. Kühn I (1980) Biotechnol Bioeng 22: 2393

    Article  Google Scholar 

  207. Hahn-HÄgerdal B, Mattiasson B, Albertsson P-å (1981) Biotechnol Lett 3: 53

    Article  Google Scholar 

  208. Larsson M, Mattiasson B (1984) Ann NY Acad Sci 434: 144

    CAS  Google Scholar 

  209. Larrson M, Mattiasson B (1984) In: Laskin AI, Tsao GT, Wingard LB Jr (eds) Enzyme Engineering 7. Plenum Publishing Corp, New York

    Google Scholar 

  210. Persson I, Tjerneld F, Hahn-HÄgerdal B (1984) Enz Microb Technol 6: 415

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. T. Tsao

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Diamond, A.D., Hsu, J.T. (1992). Aqueous two-phase systems for biomolecule separation. In: Tsao, G.T. (eds) Bioseparation. Advances in Biochemical Engineering/Biotechnology, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0046198

Download citation

  • DOI: https://doi.org/10.1007/BFb0046198

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55551-3

  • Online ISBN: 978-3-540-47211-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics