Generalized vertex-rankings of partial k-trees

Extended Abstract
  • Md. Abul Kashem
  • Xiao Zhou
  • Takao Nishizeki
Session 7: Graph Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1276)


A c-vertex-ranking of a graph G for a positive integer c is a labeling of the vertices of G with integers such that, for any label i, deletion of all vertices with labels > i leaves connected components, each having at most c vertices with label i. We present a polynomial-time algorithm to find a c-vertex-ranking of a partial k-tree using the minimum number of ranks for any bounded integers c and k.

Key words

Algorithm Partial k-tree Separator tree Treewidth Vertex-ranking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees, Journal of Algorithms, 11 (1990), pp. 631–643.Google Scholar
  2. 2.
    H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput., 25 (1996), pp. 1305–1317.Google Scholar
  3. 3.
    H.L. Bodlaender, J.S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller, and Zs. Tuza, Rankings of graphs, Proc. of the International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, Springer-Verlag, 903 (1994), pp. 292–304.Google Scholar
  4. 4.
    H.L. Bodlaender and T. Kloks, Efficient and constructive algorithms for the pathwidth and treewidth of graphs, Journal of Algorithms, 21 (1996), pp. 358–402.Google Scholar
  5. 5.
    P. de la Torre, R. Greenlaw, and A.A. Schäffer, Optimal edge ranking of trees in polynomial time, Algorithmica, 13 (1995), pp. 592–618.Google Scholar
  6. 6.
    J.S. Deogun, T. Kloks, D. Kratsch, and H. Müller, On vertex ranking for permutation and other graphs, Proc. of the 11th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, Springer-Verlag, 775 (1994), pp. 747–758.Google Scholar
  7. 7.
    I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM Transactions on Mathematical Software, 9 (1983), pp. 302–325.Google Scholar
  8. 8.
    A.V. Iyer, H.D. Ratliff, and G. Vijayan, Optimal node ranking of trees, Information Processing Letters, 28 (1988), pp. 225–229.Google Scholar
  9. 9.
    A.V. Iyer, H.D. Ratliff, and G. Vijayan, On an edge-ranking problem of trees and graphs, Discrete Applied Mathematics, 30 (1991), pp. 43–52.Google Scholar
  10. 10.
    M. Katchalski, W. McCuaig, and S. Seager, Ordered colorings, Discrete Mathematics, 142 (1995), pp. 141–154.Google Scholar
  11. 11.
    T.W. Lam and F.L. Yue, The NP-completeness of edge ranking, Manuscript, 1996.Google Scholar
  12. 12.
    J. van Leeuwen, Graph algorithms, In Handbook of Theoretical Computer Science, A: Algorithms and Complexity Theory, Amsterdam, North-Holland, 1990, pp. 527–631.Google Scholar
  13. 13.
    J.W.H. Liu, The role of elimination trees in sparse factorization, SIAM Journal of Matrix Analysis and Applications, 11 (1990), pp. 134–172.Google Scholar
  14. 14.
    A. Pothen, The complexity of optimal elimination trees, Technical Report CS-88-13, Pennsylvania State University, USA, 1988.Google Scholar
  15. 15.
    N. Robertson and P.D. Seymour, Graph minors. II. Algorithmic aspect of tree-width, Journal of Algorithms, 7 (1986), pp. 309–322.Google Scholar
  16. 16.
    A.A. Schiffer, Optimal node ranking of trees in linear time, Information Processing Letters, 33 (1989/90), pp. 91–96.Google Scholar
  17. 17.
    X. Zhou, M.A. Kashem, and T. Nishizeki, Generalized edge-rankings of trees, Proc. of the 22nd. International Workshop on Graph-Theoretic Concepts in Computer Science (WG'96), Lecture Notes in Computer Science, Springer-Verlag, 1197 (1997), pp. 390–404.Google Scholar
  18. 18.
    X. Zhou, H. Nagai, and T. Nishizeki, Generalized vertex-rankings of trees, Information Processing Letters, 56 (1995), pp. 321–328.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Md. Abul Kashem
    • 1
  • Xiao Zhou
    • 2
  • Takao Nishizeki
    • 1
  1. 1.Graduate School of Information SciencesTohoku UniversitySendaiJapan
  2. 2.Education Center for Information ProcessingTohoku UniversitySendaiJapan

Personalised recommendations