An efficient algorithm for the optimal operation of a cascade reactor

  • A. Dourado
  • J. L. Calvet
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 84)


The optimal start-up and regulation of a cascade reactor for ethanol fermentation is faced. By reducing the dimension of the model and based on the phase-plane analysis, the conditions ensuring the asymptotic stability of the system are stated. They are determined by the overall specific dilution rate and the initial conditions. The hamiltonian formulation of minimum-time start-up and regulation of the production steady-state is analysed. This time-optimal problem is approched by solving the two-point boundary value optimization problem with a quadratic criterium that accelarates the transient behaviour of the system and with decreasing final time. Results show that important savings in time can be obtained by optimal control.


biotechnological systems optimal control hierarchical control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Calvet, J.L. (1984). Methodologies iteratives et partitionnement. Application aux problemes de commande. These de Docteur d'Etat, Univ. Paul Sabatier, Toulouse, France, 1984.Google Scholar
  2. Constantinides, Alkis (1979). Application of rigurous optimization methods to the control and operation of fermentation processes. Annals of the New York Academy of Sciences, Biochemical Engineering, vol 326, 1979.Google Scholar
  3. Csáki, F. (1972). Modern Control Theories, Akedemi Kiadó, Budapest, 1972.Google Scholar
  4. Dourado, A(1983). Ethanol production in a cascade reactor:contribution a la modelization, a l'identification et a l'optimization. These de Docteur-Ingenieur, Universite Paul Sabatier, Toulouse, France, 1983.Google Scholar
  5. Fawzy, A.R. and O.R. Hinton(1982). Hierarchical dynamical optimization of the fermentation process for producing Gramacidin S, using microprocessors. Intern. J. Systems Science, vol.13, p193–208, 1982.Google Scholar
  6. Gallegos, J.A. and J.A. Gallegos(1982). Optimal control of a class of nonlinear systems. Application to a fermentation process. Trans. of the ASME, vol.104, p212, 1982.Google Scholar
  7. Gantmacher, G.(1964). Theorie des matrices.Tome 1. Dunod, Paris.Google Scholar
  8. Hassan, R. Hurteau, M.G. Singh, A. Titli (1978). A three-level costate prediction method for continuous dynamical systems.Automatica, vol.14, p177–181, 1978.Google Scholar
  9. Michel, A.N.(1983). On the status of stability of interconnected systems. IEEE trans. on AC, vol AC-28, p639–653, 1983.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • A. Dourado
    • 1
  • J. L. Calvet
    • 2
  1. 1.Departamento de Engenharia ElectrotecnicaUniversidade de CoimbraCoimbraPortugal
  2. 2.Laboratoire d'Automatique et d'Analyse des SystèmesToulouse CedexFrance

Personalised recommendations