Stabilization of the secant method via quasi-newton approach

  • O. P. Burdakoy
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 84)


Methods of the secant type for solving systems of nonlinear equations are considered. They are stable in contrast to the traditional secant method with respect to linear dependence of the search directions. A short survey of some variants of the secant method, that use quasi-Newton formulas to provide stability, is given. Some parallel algorithms are constructed on the basis of the stable secant approximations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bittner, L. Eine verallgemeinerung des Secantenverfahrens zur näherungsweisen Bereichnung der Nullstellen eines nichtlinearer Gleichungssystems. Wiss.Z. Techn. Univ. Dresden (1959). Bd. 9, S. 325–329.Google Scholar
  2. 2.
    Schwetlick, H. Numerische Lösung nichtlinearer Gleichungen. Dtsch.Verl.Wiss., Berlin (1979).Google Scholar
  3. 3.
    Wolfe, P. The secant method for simultaneous nonlinear equations, Communs ACM (1959), vol.2, p. 12–13.Google Scholar
  4. 4.
    Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970).Google Scholar
  5. 5.
    Barnes, J. An algorithm for solving nonlinear equations based on the secant method. Computer J. (1965), vol.8, p.66–72.Google Scholar
  6. 6.
    Schwetlick, H. Uber die Realisierung und Konvergenz von Mechrschrittverfahren zur iterativen Lösung nichtlinearer Gleichungen. Z. Angew.Math. und Mech. (1974), vol.54,p.479–493.Google Scholar
  7. 7.
    Gragg, W.B.; Stewart, G.W. A stable variant of the secant method for solving nonlinear equations. SIAM J. Numer. Analys. (1976), vol.13, p.889–903.Google Scholar
  8. 8.
    Martinez, J.M. Three new algorithms based on the sequential secant method, BIT (1979), vol. 19, p. 236–243.Google Scholar
  9. 9.
    Martinez, J.M.; Lopes, T.L. Combination of the sequential secant method and Broyden's method with projected updates. Computing (1980), vol.25, p.379–386.Google Scholar
  10. 10.
    Gay, D.M.; Schnabel, R.B. Solving systems of nonlinear equations by Broyden's method with projected updates. In: Nonlinear Programming 3 (O.L. Mangasarian, S.M. Robinson, R.R. Meyer, eds.), Academic Press, New York (1978), p.245–281.Google Scholar
  11. 11.
    Burdakov, O.P. Stable versions of the secant method for solving systems of equations. U.S.S.R. Comput.Maths. Math.Phys. (1983), vol.23, N5, p.1–10.Google Scholar
  12. 12.
    Burdakov,O.P. On symmetric secant methods with restart. In:Methods of Mathematical Programming and their Software.Sverdlovsk (1984) p.33–34, in Russian (to appear in U.S.S.R. Comput.Maths.Math.Phys.).Google Scholar
  13. 13.
    Burdakov, O.P. Some globally convergent modifications of Newton's method for solving systems of nonlinear equations. Soviet Math. Dokl. (1980), vol.22,p. 376–378.Google Scholar
  14. 14.
    Burdakov, O.P. Methods of the secant type for systems of equations with symmetric Jacobian matrix. Numer.Funot.Anal. and Optimiz (1983), vol.6,p.183–195.Google Scholar
  15. 15.
    Dennis, J.E.; More, J.J. Quasi-Newton methods, motivation and theory. SIAM Review (1977), vol.19,p.46–89.Google Scholar
  16. 16.
    Dennis, J.E.; Schnabel, R.B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hell.Engbewood Cliffs, NJ (1983).Google Scholar
  17. 17.
    Burdakov, O.P. On superlinear convergence of some stable variants of the secant method. Z.Angew.Math. und Mech., to appear.Google Scholar
  18. 18.
    Broyden, C.G.; Dennis, J.E.; More, J.J. On the local and superlinear convergence of quasi-Newton methods. J.Inst.Math. and Applic. (1973), vol.12,p.223–245.Google Scholar
  19. 19.
    Miranker, W.L. A survey of parallelism in numerical analysis. SIAM Review (1971), vol.13,p.524–547.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • O. P. Burdakoy
    • 1
  1. 1.Computing CentreUSSR Academy of SciencesMoscowUSSR

Personalised recommendations