Advertisement

Mathematical modelling and optimization of PVC powder blending process for development of multilevel, optimized process control system

  • Jozsef Abraham
  • Vladimir Perov
  • Karoly Nyiri
  • Lajos Iklodi
  • Istvan Kaposzta
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 84)

Abstract

For optimized, multi-level process control system mathematical model of PVC powder blending process in high speed mixers was developed. For mathematical modelling of PVC powder blending process basic parameters of elementary processes were determined. On base of process analysis and data collection from PVC powder blending process in industrial high speed mixers with help of microcomputer determined most important factors from point of wiew of process control.

On base of energy balance of blending process and semi-empirical formulas of power consumption of mixers here suggested an mathematical model, which describes temperature changes and power consumption of high speed mixers during mixing process.

Formulated the optimization task: minimizing of consumed energy for production of PVC compound and maximizing of production capacity of mixers. Developed an optimization algorithm, which makes possible to control the blending process according to selected objectiv function. Suggested a new, multi-level structure of process control system for PVC powder blending, which uses developed mathematical model and optimization algorithm. Developed an supervison control program, which realises the upper level of optimized, multilevel on-line, real-time microprocessor based control system.

Keywords

Cooling Medium Process Control System Develop Mathematical Model Time Process Control High Speed Mixer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrahám J., Perov V.L., Kiss L., Iklodi L., Nyiri K., Kaposzta I. Müanyag és Gumi, 21/7, 189–192., /1984/Google Scholar
  2. 2.
    J. Abraham, V.L. Perov., L. Kiss, L. Iklodi, K. Nyiri, I.Kaposzta Plaste und Kautschuk, /1985/ 2. p62–65.Google Scholar
  3. 3.
    V.V. Bogdanov, R.V. Torner, V.N. Kraszovszkij, E.O. Reger: Szemisenije polimerov, Leningrád, Himija, /1979/ pp.10–14. 179–192.Google Scholar
  4. 4.
    K. Sommer: Chem. Ing. Techn. 49, /1977/ 4, pp. 305–311.Google Scholar
  5. 5.
    D.D. Rjabinin, Ju. E. Lukacs: Szemisitelnüe masinü dlja plasztmassz i rezinovüh szmeszej, Moszkva, Mashinostroenije /1972/ pp. 238–244.Google Scholar
  6. 6.
    V.A. Szilin, Himicseszkoje Masinosztroenije USSR, Kijev,Technika, No4, /1966/ pp. 31–49.Google Scholar
  7. 7.
    Pukánszky B., Józsa S., Pukánszky B. Jn.: Müanyag és Gumi, 15/11, 331–339., /1978/Google Scholar
  8. 8.
    Pukánszky B., Juhász E., Nyitrai Zs.: Müanyag és Gumi, 15/7, 202–206., /1978/Google Scholar
  9. 9.
    Dimitrov M., Pazonyi T., Pukánszky B.: Müanyag és Gumi, 13/7, 201–204., /1976/Google Scholar
  10. 10.
    J. Schmiedke: Forschungsbericht, /1979/ jun. FIMUR. "Abhängigkeit des Temperaturverlaufs von der Zeit, der Drehzal und den Mischwerkzeug-Abständen bei der Aufbereitung von PVC."Google Scholar
  11. 11.
    J. Schmiedke: Plastverarbeiter /1982/ Vol.33, No2, pp.157–162.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Jozsef Abraham
    • 1
  • Vladimir Perov
    • 2
  • Karoly Nyiri
    • 1
  • Lajos Iklodi
    • 1
  • Istvan Kaposzta
    • 1
  1. 1.Borsod Chemical WorksKazincbarcikaHungary
  2. 2.UNIDO, Department of Industrial OperationsWienAustria

Personalised recommendations