Incremental models of updating data bases

  • Marek A. Suchenek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 425)


This paper introduces a generalization of weak model-theoretic forcing of [Rob71] and [Kei73]. This generalized forcing preserves classic properties of weak model-theoretic forcing, e.g. Generic Set Theorem (Thm. 3.23), Generic Model Theorem (Thm. 3.24, Thm. 4.8), and Henrard's Theorem (Thm. 5.8). It is applied in this paper to investigate a deductive model for updating a deductive data base with incomplete information, whose possible variations are restricted to certain finite sets of atomic or negated atomic first-order sentences. Moreover, the paper introduces the notion of pragmatic truth pertinent to those models, and characterizes it in terms of generalized forcing (Thm. 5.11).

In conclusion, the paper offers (Thm. 8.4) two semantic and two syntactic characterizations of the ∀-fragment of minimal entailment.

Key words

closed world assumption deductive data bases machine reasoning minimal entailment model theory of non-monotonic logics model-theoretic forcing non-standard negation pragmatic truth theory of update 

AMS classification

03C25 03C40 03C52 68G99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bar78]
    Jon Barwise, editor. Handbook of Mathematical Logic. North-Holland, Amsterdam, second edition, 1978.Google Scholar
  2. [BH86]
    N. Bidoit and R. Hull. Positivism vs. minimalism in deductive databases. In A. Silberschatz, editor, Proceedings of 5-th Symposium on Principles of Database Systems, pages 123–132, A.C.M. SIGACT-SIGMOD, Association for Computing Machinery, New York, 1986.Google Scholar
  3. [BS84]
    Genviéve Bossu and Pierre Siegel. Saturation, nonmonotonic reasoning, and the closed world assumption. Artificial Intelligence, 25(1):13–64, 1984.MathSciNetCrossRefGoogle Scholar
  4. [EMR85]
    David W. Etherington, Robert Mercer, and Raymond Reiter. On the adequacy of predicate circumscription for closed-world reasoning. Computational Intelligence, 1:11–15, 1985.Google Scholar
  5. [Hen73]
    Paul Henrard. Le ‘forcing-compagnon’ sans ‘forcing'. C. R. Acad. Sc., 276(Ser. A):821–822, 1973.MATHMathSciNetGoogle Scholar
  6. [Hin88]
    Jaakko Hintikka. Model minimization — an alternative to circumscription. Journal of Automated Reasoning, 4:1–13, 1988.MathSciNetCrossRefGoogle Scholar
  7. [Kai69]
    Kurt Kaiser. Über eine verallgemeinerung der Robinsonschen Modellvervollstaändigung. Zeitschrift für Mathematik Logik und Grundlagen der Mathematik, 15:37–48, 1969.MATHMathSciNetGoogle Scholar
  8. [Kei73]
    H. Jerome Keisler. Forcing and the omitting types theorem. In M. Morley, editor, Studies in Model Theory, pages 96–133, Mathematical Association of America, 1973.Google Scholar
  9. [Lyn59]
    Roger C. Lyndon. Properties preserved under homomorphism. Pacific J. Math., 9:143–154, 1959.MATHMathSciNetGoogle Scholar
  10. [Min82]
    Jack Minker. On indefinite databases and closed world assumption. In Proceedings of Sixth Conference on Automated Deduction, pages 292–308, Springer Verlag, Berlin, New York, 1982.CrossRefGoogle Scholar
  11. [Rei78]
    Raymond Reiter. On closed world data bases. In Hervé Gallaire and Jack Minker, editors, Logic and Data Bases, pages 55–76, Plenum Press, 1978.Google Scholar
  12. [Rei80]
    Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13(1–2):81–132, 1980.MATHMathSciNetCrossRefGoogle Scholar
  13. [Rob71]
    Abraham Robinson. Forcing in model theory. In Proc. Simp. Mat., pages 64–80, Institute Nationale di Alta Matematica, 1971.Google Scholar
  14. [She88]
    John C. Shepherdson. Negation in logic programming. In Jack Minker, editor, Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann Publ., Inc., Los Altos, 1988.Google Scholar
  15. [ST]
    Marek A. Suchenek and James H. Thomas. Forcings and homomorphisms in deductive data bases. Submitted.Google Scholar
  16. [Suc84]
    Marek A. Suchenek. Forcing treatment of incomplete information in data bases. In International Symposium on Model Theory in Foundations of Computer Science, Budapest, September 1984.Google Scholar
  17. [Suc85]
    Marek A. Suchenek. On asymptotic decidability of modeltheoretic forcing. Research Reports 63/85, Institute of Computer Science, Warsaw Technical University, Nowowiejska 15/19, 00-665 Warszawa, Poland, 1985.Google Scholar
  18. [Suc86]
    Marek A. Suchenek. Non-monotonic derivations which preserve pragmatic truth. In Maria Zemankova and M. L. Emrich, editors, Proceedings of the International Symposium on Methodologies for Intelligent Systems, Colloquia Program, ORNL-6362, pages 69–74, Oak Ridge National Laboratory, Knoxville, October 1986.Google Scholar
  19. [Suc87]
    Marek. A. Suchenek. Forcing versus closed world assumption. In Zbigniew W. Raś and Maria Zemankova, editors, Methodologies for Intelligent Systems, pages 453–460, North-Holland, 1987.Google Scholar
  20. [Suc89a]
    Marek A. Suchenek. Minimal models for closed world data bases. In Fourth International Symposium on Methodologies for Intelligent Systems, North-Holland, Charlotte, N.C., October 12–14 1989. To appear in Proceedings of the Symposium.Google Scholar
  21. [Suc89b]
    Marek A. Suchenek. A syntactic characterization of minimal entailment. In North American Conference on Logic Programming, MIT Press, Cleveland, OH, October 16–20 1989. To appear in Proceedings of the Conference.Google Scholar
  22. [Suc89c]
    Marek A. Suchenek. Two applications of model-theoretic forcing to Lipski's data bases with incomplete information. Fundamenta Informaticae, 12:269–288, 1989.MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Marek A. Suchenek
    • 1
  1. 1.Dept. of Computer ScienceWichita State UniversityWichita

Personalised recommendations