Mal'cev algebras for universal algebra terms

  • Ivo G. Rosenberg
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 425)


We discuss formal treatments of composition and terms in universal algebra, propositional logics etc. which may serve as an indispensable base for computer programs capable of term building and term comparison, an important problem in theoretical computer science. After a survey we discuss various Mal'cev algebras introduced for this purpose: preiterative, preiterative with identity, iterative and postiterative. These algebras seem to be simple to implement. We then show how these algebras allow to bring certain universal algebra concepts (as varieties and subvarieties, interpretation and hyperidentities) one conceptual level down. We conclude with a list of properties of preiterative algebras.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cohn, B.M., Universal Algebra, Harper and Row, New York, 1965; second edition: D. Reidel Publ. Co. Dordrecht, Boston, London 1981.MATHGoogle Scholar
  2. [2]
    Coxeter, H.S.M.; Moser, W.O.J., Generators and relations for discrete groups. Ergeb. d. Math. u. ihrer Grenzgebiete 14, Springer Verlag 1972.Google Scholar
  3. [3]
    Garcia, D.C.; Taylor, W.F., The lattice of interpretability types of varieties. Mem. Amer. Math. Soc. (50) 1984, no. 305, v+125 pp.Google Scholar
  4. [4]
    Grätzer, G., Universal algebra. D. van Nostrand Co., Princeton N.J. 1968, 2nd edition Birkhauser Verlag Basel 1979.MATHGoogle Scholar
  5. [5]
    Jablonskii, S.V., Functional constructions in a k-valued logic (Russian). Trudg Mat. Inst. Steklov 51 (1958) 5–142.MathSciNetGoogle Scholar
  6. [6]
    Janov, Ju.I.; Mucnik, A.A., Existence of k-valued closed classes without a finite basis (Russian). Dokl. Akad. Nauk SSSR 127 (1959) 44–46.MATHMathSciNetGoogle Scholar
  7. [7]
    Lau, D., Function algebras over finite sets (German) Dissertation, Wilhelm-Pieck-Universität Rostock, 1984, 214 pp.Google Scholar
  8. [8]
    Mal'cev, A.I., Iterative algebras and Post's varieties (Russian). Algebra i logika (Sem.) 5 (1966) No.2, pp. 5–24. English translation in The metamathematics of algebraic systems, Collected papers 1936–67. Studies in Logics and Fondations of Mathematics, vol. 66, North-Holland 1971.MATHMathSciNetGoogle Scholar
  9. [9]
    Menger, K., Function algebra and propositional calculus. Self-organizing systems 1962. Washington: Spartan Books 1962.Google Scholar
  10. [10]
    Menger, K., On substitutive algebra and its syntax. Z. Math. Logik Grundl. Math. 10 (1964) 81–104.MATHMathSciNetGoogle Scholar
  11. [11]
    Menger, K.; Whitlock, H.I., Two theorems on the generation of systems of functions. Fund.Math. 58 (1966) 229–240.MATHMathSciNetGoogle Scholar
  12. [12]
    Rosenberg, I.G., Characterization of Mal'cev's preiterative algebra (prelim. announc.) Preprint CRM-594, Université de Montréal 1976, 15 pp.Google Scholar
  13. [13]
    Schweitzer, B.; Sklar, A., A mapping algebra with infinitely many operations. Colloq. Math. 9 (1962) 33–38.MathSciNetGoogle Scholar
  14. [14]
    Skala, H.L., Grouplike Menger Algebras. Fund. Math. 79 (1973) 199–207.MATHMathSciNetGoogle Scholar
  15. [15]
    Trokhimenko, V.S., Ordered algebras of multiplace functions (Russian). Izv. Vyss Ucebn Zaved. Matematika 104 (1971), 90–98.Google Scholar
  16. [16]
    Trokhimenko, S.V., Characteristic of some algebras of functions of many-valued logic (Russian, English summary). Kibernetika Kiev 1987, no. 3, 63–67, 80, 135.Google Scholar
  17. [17]
    Whitlock, H.I., A composition algebra for multiplace functions. Math. Ann. 157 (1964) 167–178.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Ivo G. Rosenberg
    • 1
  1. 1.Département de mathématiques et statistiqueUniversité de MontréalMontréalCanada

Personalised recommendations